ﻻ يوجد ملخص باللغة العربية
We propose a 2-dimensional cellular automaton model to simulate pedestrian traffic. It is a vmax=1 model with exclusion statistics and parallel dynamics. Long-range interactions between the pedestrians are mediated by a so called floor field which modifies the transition rates to neighbouring cells. This field, which can be discrete or continuous, is subject to diffusion and decay. Furthermore it can be modified by the motion of the pedestrians. Therefore the model uses an idea similar to chemotaxis, but with pedestrians following a virtual rather than a chemical trace. Our main goal is to show that the introduction of such a floor field is sufficient to model collective effects and self-organization encountered in pedestrian dynamics, e.g. lane formation in counterflow through a large corridor. As an application we also present simulations of the evacuation of a large room with reduced visibility, e.g. due to failure of lights or smoke.
We present theoretical arguments and simulation data indicating that the scaling of earthquake events in models of faults with long-range stress transfer is composed of at least three distinct regions. These regions correspond to three classes of ear
Based on a detailed microscopic test scenario motivated by recent empirical studies of single-vehicle data, several cellular automaton models for traffic flow are compared. We find three levels of agreement with the empirical data: 1) models that do
Inspired by recent developments in the study of chaos in many-body systems, we construct a measure of local information spreading for a stochastic Cellular Automaton in the form of a spatiotemporally resolved Hamming distance. This decorrelator is a
Many diffusion processes in nature and society were found to be anomalous, in the sense of being fundamentally different from conventional Brownian motion. An important example is the migration of biological cells, which exhibits non-trivial temporal
We apply the transfer-matrix DMRG (TMRG) to a stochastic model, the Domany-Kinzel cellular automaton, which exhibits a non-equilibrium phase transition in the directed percolation universality class. Estimates for the stochastic time evolution, phase