ﻻ يوجد ملخص باللغة العربية
Two integrable quantum spin ladder systems will be introduced associated with the fundamental su(2|2) solution of the Yang-Baxter equation. The first model is a generalized quantum Ising system with Ising rung interactions. In the second model the addition of extra interactions allows us to impose Heisenberg rung interactions without violating integrability. The existence of a Bethe ansatz solution for both models allows us to investigate the elementary excitations for antiferromagnetic rung couplings. We find that the first model does not show a gap whilst in the second case there is a gap for all positive values of the rung coupling.
In this paper we study the ground state properties of a ladder Hamiltonian with chiral $SU(2)$-invariant spin interactions, a possible first step towards the construction of truly two dimensional non-trivial systems with chiral properties starting fr
We consider the string-net model obtained from $SU(2)_2$ fusion rules. These fusion rules are shared by two different sets of anyon theories. In this work, we study the competition between the two corresponding non-Abelian quantum phases in the ladde
Two-leg spin-1/2 ladder systems consisting of a ferromagnetic leg and an antiferromagnetic leg are considered where the spins on the legs interact through antiferromagnetic rung couplings $J_1$. These ladders can have two geometrical arrangements eit
We present magnetic suscceptibility and heat capacity data on a new S=1/2 two-leg spin ladder compound BiCu2PO6. From our susceptibility analysis, we find that the leg coupling J1/k_B is ~ 80 K and the ratio of the rung to leg coupling J2/J1 ~ 0.9. W
Coupled cluster (CC) has established itself as a powerful theory to study correlated quantum many-body systems. Finite temperature generalizations of CC theory have attracted considerable interest and have been shown to work as well as the ground-sat