ﻻ يوجد ملخص باللغة العربية
For a family of logistic-like maps, we investigate the rate of convergence to the critical attractor when an ensemble of initial conditions is uniformly spread over the entire phase space. We found that the phase space volume occupied by the ensemble $W(t)$ depicts a power-law decay with log-periodic oscillations reflecting the multifractal character of the critical attractor. We explore the parametric dependence of the power-law exponent and the amplitude of the log-periodic oscillations with the attractors fractal dimension governed by the inflexion of the map near its extremal point. Further, we investigate the temporal evolution of $W(t)$ for the circle map whose critical attractor is dense. In this case, we found $W(t)$ to exhibit a rich pattern with a slow logarithmic decay of the lower bounds. These results are discussed in the context of non-extensive Tsallis entropies.
For a family of logistic-like maps, we investigate the rate of convergence to the critical attractor when an ensemble of initial conditions is uniformly spread over the entire phase space. We found that the phase space volume occupied by the ensemble
We introduce a new universality class of one-dimensional unimodal dissipative maps. The new family, from now on referred to as the ($z_1,z_2$)-{it logarithmic map}, corresponds to a generalization of the $z$-logistic map. The Feigenbaum-like constant
We consider biological evolution as described within the Bak and Sneppen 1993 model. We exhibit, at the self-organized critical state, a power-law sensitivity to the initial conditions, calculate the associated exponent, and relate it to the recently
The sensitivity to initial conditions and relaxation dynamics of two-dimensional maps are analyzed at the edge of chaos, along the lines of nonextensive statistical mechanics. We verify the dual nature of the entropic index for the Henon map, one ($q
We study the effects of dissipative boundaries in many-body systems at continuous quantum transitions, when the parameters of the Hamiltonian driving the unitary dynamics are close to their critical values. As paradigmatic models, we consider fermion