We study the transport properties of the two-dimensional electron gas in AlGaAs/GaAs heterostructures in parallel to the interface magnetic fields at low temperatures. The magnetoresistance in the metallic phase is found to be positive and weakly anisotropic with respect to the orientation of the in-plane magnetic field and the current through the sample. At low electron densities ($n_s< 5times 10^{10}$ cm$^{-2}$) the experimental data can be described adequately within spin-related approach while at high $n_s$ the magnetoresistance mechanism changes as inferred from $n_s$-independence of the normalized magnetoresistance.
By applying a magnetic field perpendicular to GaAs/AlGaAs two-dimensional electron systems, we study the low-field Landau quantization when the thermal damping is reduced with decreasing the temperature. Magneto-oscillations following Shubnikov-de Ha
as (SdH) formula are observed even when their amplitudes are so large that the deviation to such a formula is expected. Our experimental results show the importance of the positive magneto-resistance to the extension of SdH formula under the damping induced by the disorder.
A metal-insulator transition in two-dimensional electron gases at B=0 is found in Ga(Al)As heterostructures, where a high density of self-assembled InAs quantum dots is incorporated just 3 nm below the heterointerface. The transition occurs at resist
ances around h/e^2 and critical carrier densities of 1.2 10^11cm^-2. Effects of electron-electron interactions are expected to be rather weak in our samples, while disorder plays a crucial role.
We investigated the spin dynamics of two-dimensional electrons in (001) GaAs/AlGaAs heterostructure using the time resolved Kerr rotation technique under a transverse magnetic field. The in-plane spin lifetime is found to be anisotropic below 150k du
e to the interference of Rashba and Dresselhaus spin-orbit coupling and Dyakonov-Perel spin relaxation. The ratio of in-plane spin lifetimes is measured directly as a function of temperature and pump power, showing that the electron density in 2DEG channel strongly affects the Rashba spin-orbit coupling.
We study the spin dynamics in a high-mobility two-dimensional electron gas confined in a GaAs/AlGaAs quantum well. An unusual magnetic field dependence of the spin relaxation is found: as the magnetic field becomes stronger, the spin relaxation time
first increases quadratically but then changes to a linear dependence, before it eventually becomes oscillatory, whereby the longitudinal and transverse times reach maximal values at even and odd filling Landau level factors, respectively. We show that the suppression of spin relaxation is due to the effect of electron gyration on the spin-orbit field, while the oscillations correspond to oscillations of the density of states appearing at low temperatures and high magnetic fields. The transition from quadratic to linear dependence can be related to a transition from classical to Bohm diffusion and reflects an anomalous behavior of the two-dimensional electron gas analogous to that observed in magnetized plasmas.
Introduction of a Josephson field effect transistor (JoFET) concept sparked active research on proximity effects in semiconductors. Induced superconductivity and electrostatic control of critical current has been demonstrated in two-dimensional gases
in InAs, graphene and topological insulators, and in one-dimensional systems including quantum spin Hall edges. Recently, interest in superconductor-semiconductor interfaces was renewed by the search for Majorana fermions, which were predicted to reside at the interface. More exotic non-Abelian excitations, such as parafermions (fractional Majorana fermions) or Fibonacci fermions may be formed when fractional quantum Hall edge states interface with superconductivity. In this paper we develop transparent superconducting contacts to high mobility two-dimensional electron gas (2DEG) in GaAs and demonstrate induced superconductivity across several microns. Supercurrent in a ballistic junction has been observed across 0.6 $mu$m of 2DEG, a regime previously achieved only in point contacts but essential to the formation of well separated non-Abelian states. High critical fields ($>16$ Tesla) in NbN contacts enables investigation of a long-sought regime of an interplay between superconductivity and strongly correlated states in a 2DEG at high magnetic fields.
V.S. Khrapai
,E.V. Deviatov
,A.A. Shashkin
.
(2000)
.
"Response of the two-dimensional electron gas of AlGaAs/GaAs heterostructures to parallel magnetic field"
.
Eduard V. Deviatov
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا