ترغب بنشر مسار تعليمي؟ اضغط هنا

Decoherence in Two Bose-Einstein Condensates

86   0   0.0 ( 0 )
 نشر من قبل Dr. Le Man Kuang
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, decoherence in a system consisting of two Bose-Einstein condensates is investigated analytically. It is indicated that decoherence can be controlled through manipulating the interaction between the system and environment. The influence of the decoherence on quantum coherent atomic tunneling (AT) between two condensates with arbitrary initial states is studied in detail. Analytic expressions of the population difference (PD) and the AT current between two condensates are found. It is shown that the decoherence leads to the decay of the PD and the suppression of the AT current.



قيم البحث

اقرأ أيضاً

We present a new theoretical treatment of macroscopic quantum self-trapping (MQST) and quantum coherent atomic tunneling in a zero-temperature two-species Bose-Einstein condensate system in the presence of the nonlinear self-interaction of each speci es, the interspecies nonlinear interaction, and the Josephson-like tunneling interaction. It is shown that the nonlinear interactions can dramatically affect the MQST and the atomic tunneling, and lead to the collapses and revivals (CR) of population imbalance between the two condensates. The competing effects between the self-interaction of each species and the interspecies interaction can lead to the quenching of the MQST and the suppression of the CR and the Shapiro-like steps of the atomic tunneling current. It is revealed that the interatomic nonlinear interactions can induce the coherent atomic tunneling between two condensates even though there does not exist the interspecies Josephson-like tunneling coupling.
96 - J.R. Anglin 2001
The theory of vortex motion in a dilute superfluid of inhomogeneous density demands a boundary layer approach, in which different approximation schemes are employed close to and far from the vortex, and their results matched smoothly together. The mo st difficult part of this procedure is the hydrodynamic problem of the velocity field many healing lengths away from the vortex core. This paper derives and exploits an exact solution of this problem in the two-dimensional case of a linear trapping potential, which is an idealization of the surface region of a large condensate. It thereby shows that vortices in inhomogeneous clouds are effectively dressed by a non-trivial distortion of their flow fields; that image vortices are not relevant to Thomas-Fermi surfaces; and that for condensates large compared to their surface depths, the energetic barrier to vortex penetration disappears at the Landau critical velocity for surface modes.
213 - Wolfgang Ketterle 2001
The coherent and collective nature of a Bose-Einstein condensate can enhance or suppress physical processes. Bosonic stimulation enhances scattering in already occupied states which leads to matter wave amplification, and the suppression of dissipati on leads to superfluidity. In this summer school notes we present several experiments where enhancement and suppression have been observed and discuss the common roots of and differences between these phenomena.
198 - R. Nath , P. Pedri , L. Santos 2008
The partially attractive character of the dipole-dipole interaction leads to phonon instability in dipolar condensates, which is followed by collapse in three-dimensional geometries. We show that the nature of this instability is fundamentally differ ent in two-dimensional condensates, due to the dipole-induced stabilization of two-dimensional bright solitons. As a consequence, a transient gas of attractive solitons is formed, and collapse may be avoided. In the presence of an harmonic confinement, the instability leads to transient pattern formation followed by the creation of stable two-dimensional solitons. This dynamics should be observable in on-going experiments, allowing for the creation of stable two-dimensional solitons for the first time ever in quantum gases.
We propose and analyze a general mechanism of disorder-induced order in two-component Bose-Einstein condensates, analogous to corresponding effects established for XY spin models. We show that a random Raman coupling induces a relative phase of pi/2 between two BECs and that the effect is robust. We demonstrate it in 1D, 2D and 3D at T=0 and present evidence that it persists at small T>0. Applications to phase control in ultracold spinor condensates are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا