ﻻ يوجد ملخص باللغة العربية
The condensation energy can be shown to be a moment of the change in the occupied part of the spectral function when going from the normal to the superconducting state. As a consequence, there is a one to one correspondence between the energy gain associated with forming the superconducting ground state, and the dramatic changes seen in angle resolved photoemission spectra. Some implications this observation has are offered.
Room-temperature superconductivity has been one of the most challenging subjects in modern physics. Recent experiments reported that lanthanum hydride LaH$_{10{pm}x}$ ($x$$<$1) raises a superconducting transition temperature $T_{rm c}$ up to ${sim}$2
The latest discovery of high temperature superconductivity signature in single-layer FeSe is significant because it is possible to break the superconducting critical temperature ceiling (maximum Tc~55 K) that has been stagnant since the discovery of
The high-energy kink or the waterfall effect seen in the photoemission spectra of the cuprates is suggestive of the coupling of the quasiparticles to a high energy bosonic mode with implications for the mechanism of superconductivity. Recent experime
Soon after the discovery of the first high temperature superconductor by Georg Bednorz and Alex Mueller in 1986 the late Sir Nevill Mott answering his own question Is there an explanation? [Nature v 327 (1987) 185] expressed a view that the Bose-Eins
The discovery of high temperature superconductivity in the cuprates in 1986 triggered a spectacular outpouring of creative and innovative scientific inquiry. Much has been learned over the ensuing 28 years about the novel forms of quantum matter that