ترغب بنشر مسار تعليمي؟ اضغط هنا

The SNR W28 at TeV Energies

66   0   0.0 ( 0 )
 نشر من قبل Masaki Mori
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The southern supernova remnant (SNR)W28 was observed in 1994 and 1995 by the CANGAROO 3.8m telescope in a search formulti-TeV gamma ray emission, using the Cerenkov imaging technique. We obtained upper limits for a variety of point-like and extended features within a +-1 degree-region and briefly discuss these results, together with that of EGRET within the framework of a shock acceleration model of the W28 SNR.



قيم البحث

اقرأ أيضاً

The atmospheric Cerenkov imaging technique has been used to search for point-like and diffuse TeV gamma-ray emission from the southern supernova remnant, W28, and surrounding region. The search, made with the CANGAROO 3.8m telescope, encompasses a nu mber of interesting features, the supernova remnant itself, the EGRET source 3EG J1800-2338, the pulsar PSR J1801-23, strong 1720 MHz OH masers and molecular clouds on the north and east boundaries of the remnant. An analysis tailored to extended and off-axis point sources was used, and no evidence for TeV gamma-ray emission from any of the features described above was found in data taken over the 1994 and 1995 seasons. Our upper limit (E>1.5 TeV) for a diffuse source of radius 0.25deg encompassing both molecular clouds was calculated at 6.64e-12 photons cm^-2 s^-1 (from 1994 data), and interpreted within the framework of a model predicting TeV gamma-rays from shocked-accelerated hadrons. Our upper limit suggests the need for some cutoff in the parent spectrum of accelerated hadrons and/or slightly steeper parent spectra than that used here (-2.1). As to the nature of 3EG J1800-2338, it possibly does not result entirely from pi-zero decay, a conclusion also consistent with its location in relation to W28.
We report on observations of very high-energy gamma rays from the shell-type supernova remnant Cassiopeia A with the VERITAS stereoscopic array of four imaging atmospheric Cherenkov telescopes in Arizona. The total exposure time for these observation s is 22 hours, accumulated between September and November of 2007. The gamma-ray source associated with the SNR Cassiopeia A was detected above 200 GeV with a statistical significance of 8.3 s.d. The estimated integral flux for this gamma-ray source is about 3% of the Crab-Nebula flux. The photon spectrum is compatible with a power law dN/dE ~ E^(-Gamma) with an index Gamma = 2.61 +/- 0.24(stat) +/- 0.2(sys). The data are consistent with a point-like source. We provide a detailed description of the analysis results, and discuss physical mechanisms that may be responsible for the observed gamma-ray emission.
Supernova remnants (SNRs) are believed to be the main sources of Galactic cosmic rays. Molecular clouds associated with SNRs can produce gamma-ray emission through the interaction of accelerated particles with the concentrated gas. The middle aged SN R W28, for its associated system of dense molecular clouds, provides an excellent opportunity to test this hypothesis. We present the AGILE/GRID observations of SNR W28, and compare them with observations at other wavelengths (TeV and 12CO J=1-->0 molecular line emission). The gamma-ray flux detected by AGILE from the dominant source associated with W28 is (14 +- 5) 10^-8 ph cm^-2 s^-1 for E > 400 MeV. This source is positionally well correlated with the TeV emission observed by the HESS telescope. The local variations of the GeV to TeV flux ratio suggest a difference between the CR spectra of the north-west and south molecular cloud complexes. A model based on a hadronic-induced interaction and diffusion with two molecular clouds at different distances from the W28 shell can explain both the morphological and spectral features observed by AGILE in the MeV-GeV energy range and by the HESS telescope in the TeV energy range. The combined set of AGILE and H.E.S.S. data strongly support a hadronic model for the gamma-ray production in W28.
Supernova remnants interacting with molecular clouds are ideal laboratories to study the acceleration of particles at shock waves and their transport and interactions in the surrounding interstellar medium. In this paper, we focus on the supernova re mnant W28, which over the years has been observed in all energy domains from radio waves to very-high-energy gamma rays. The bright gamma-ray emission detected from molecular clouds located in its vicinity revealed the presence of accelerated GeV and TeV particles in the region. An enhanced ionization rate has also been measured by means of millimetre observations, but such observations alone cannot tell us whether the enhancement is due to low energy (MeV) cosmic rays (either protons or electrons) or the X-ray photons emitted by the shocked gas. The goal of this study is to determine the origin of the enhanced ionization rate and to infer from multiwavelength observations the spectrum of cosmic rays accelerated at the supernova remnant shock in the unprecedented range spanning from MeV to multi-TeV particle energies. We developed a model to describe the transport of X-ray photons into the molecular cloud, and we fitted the radio, millimeter, and gamma-ray data to derive the spectrum of the radiating particles. The contribution from X-ray photons to the enhanced ionization rate is negligible, and therefore the ionization must be due to cosmic rays. Even though we cannot exclude a contribution to the ionization rate coming from cosmic ray electrons, we show that a scenario where cosmic ray protons explain both the gamma-ray flux and the enhanced ionization rate provides the most natural fit to multiwavelength data. This strongly suggests that the intensity of CR protons is enhanced in the region for particle energies in a very broad range covering almost 6 orders of magnitude: from $lesssim 100$ MeV up to several tens of TeV.
224 - Prabir Banik , , Arunava Bhadra 2019
The galactic cosmic rays are generally believed to be originated in supernova remnants (SNRs), produced in diffusive shock acceleration (DSA) process in supernova blast waves driven by expanding SNRs. One of the key unsettled issue in SNR origin of c osmic ray model is the maximum attainable energy by a cosmic ray particle in the supernova shock. Recently it has been suggested that an amplification of effective magnetic field strength at the shock may take place in young SNRs due to growth of magnetic waves induced by accelerated cosmic rays and as a result the maximum energy achieved by cosmic rays in SNR may reach the knee energy instead of $sim 200$ TeV as predicted earlier under normal magnetic field situation. In the present work we investigate the implication of such maximum energy scenarios on TeV gamma rays and neutrino fluxes from the molecular clouds interacting with the SNR W28. The authors compute the gamma-ray and neutrino flux assuming two different values for the maximum energy reached by cosmic rays in the SNR, from CR interaction in nearby molecular clouds. Both protons and nuclei are considered as accelerated particles and as target material. Our findings suggest that the issue of the maximum energy of cosmic rays in SNRs can be observationally settled by the upcoming gamma-ray experiment the Large High Altitude Air Shower Observatory (LHAASO). The estimated neutrino fluxes from the molecular clouds are , however, out of reach of the present/near future generation of neutrino telescopes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا