ترغب بنشر مسار تعليمي؟ اضغط هنا

Mass-loss rates and luminosity functions of dust-enshrouded AGB stars and red supergiants in the LMC

62   0   0.0 ( 0 )
 نشر من قبل J. M. Oliveira
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A radiative transfer code is used to model the spectral energy distributions of 57 mass-losing Asymptotic Giant Branch (AGB) stars and red supergiants (RSGs) in the Large Magellanic Cloud (LMC) for which ISO spectroscopic and photometric data are available. As a result we derive mass-loss rates and bolometric luminosities. A gap in the luminosity distribution around M_bol = -7.5 mag separates AGB stars from RSGs. The luminosity distributions of optically bright carbon stars, dust-enshrouded carbon stars and dust-enshrouded M-type stars have only little overlap, suggesting that the dust-enshrouded AGB stars are at the very tip of the AGB and will not evolve significantly in luminosity before mass loss ends their AGB evolution. Derived mass-loss rates span a range from Mdot about 10^-7 to 10^-3 M_sun/yr. More luminous and cooler stars are found to reach higher mass-loss rates. The highest mass-loss rates exceed the classical limit set by the momentum of the stellar radiation field, L/c, by a factor of a few due to multiple scattering of photons in the circumstellar dust envelope. Mass-loss rates are lower than the mass consumption rate by nuclear burning, Mdot_nuc, for most of the RSGs. Two RSGs have Mdot >> Mdot_nuc, however, suggesting that RSGs shed most of their stellar mantles in short phases of intense mass loss. Stars on the thermal pulsing AGB may also experience episodes of intensified mass loss, but their quiescent mass-loss rates are usually already higher than Mdot_nuc.



قيم البحث

اقرأ أيضاً

We aim to investigate mass loss and luminosity in a large sample of evolved stars in several Local Group galaxies with a variety of metalliticies and star-formation histories: the Small and Large Magellanic Cloud, and the Fornax, Carina, and Sculptor dwarf spheroidal galaxies. Dust radiative transfer models are presented for 225 carbon stars and 171 oxygen-rich evolved stars for which spectra from the Infrared Spectrograph on Spitzer are available. The spectra are complemented with available optical and infrared photometry to construct spectral energy distributions. A minimization procedure was used to determine luminosity and mass-loss rate (MLR). Pulsation periods were derived for a large fraction of the sample based on a re-analysis of existing data. New deep K-band photometry from the VMC survey and multi-epoch data from IRAC and AllWISE/NEOWISE have allowed us to derive pulsation periods longer than 1000 days for some of the most heavily obscured and reddened objects. We derive (dust) MLRs and luminosities for the entire sample. The estimated MLRs can differ significantly from estimates for the same objects in the literature due to differences in adopted optical constants (up to factors of several) and details in the radiative transfer modelling. Updated parameters for the super-AGB candidate MSX SMC 055 (IRAS 00483-7347) are presented. Its current mass is estimated to be 8.5 +- 1.6 msol, suggesting an initial mass well above 8~msol. Using synthetic photometry, we present and discuss colour-colour and colour-magnitude diagrams which can be expected from the James Webb Space Telescope.
336 - Eric Lagadec 2007
To study the effect of metallicity on the mass-loss rate of asymptotic giant branch (AGB) stars, we have conducted mid-infrared photometric measurements of such stars in the Sagittarius (Sgr dSph) and Fornax dwarf spheroidal galaxies with the 10-$mu$ m camera VISIR at the VLT. We derive mass-loss rates for 29 AGB stars in Sgr dSph and 2 in Fornax. The dust mass-loss rates are estimated from the $K-[9]$ and $K-[11]$ colours. Radiative transfer models are used to check the consistency of the method. Published IRAS and Spitzer data confirm that the same tight correlation between $K-[12]$ colour and dust mass-loss rates is observed for AGB stars from galaxies with different metallicities, i.e. the Galaxy, the LMC and the SMC. The derived dust mass-loss rates are in the range 5$times10^{-10}$ to 3$times10^{-8}$ M$_{odot}$yr$^{-1}$ for the observed AGB stars in Sgr dSph and around 5$times10^{-9}$ M$_{odot}$yr$^{-1}$ for those in Fornax; while values obtained with the two different methods are of the same order of magnitude. The mass-loss rates for these stars are higher than the nuclear burning rates, so they will terminate their AGB phase by the depletion of their stellar mantles before their core can grow significantly. Some observed stars have lower mass-loss rates than the minimum value predicted by theoretical models.
As part of a reanalysis of Galactic Asymptotic Giant Branch stars (hereafter AGB stars) at infrared wavelengths, we discuss here two samples (the first of carbon-rich stars, the second of S stars) for which photometry in the near- and mid-IR and dist ance estimates are available. Whenever possible we searched also for mass-loss rates. The observed spectral energy distributions extended in all cases up to 20 $mu$m and for the best-observed sources up to 45 $mu$m. The wide wavelength coverage allows us to obtain reliable bolometric corrections, and hence bolometric magnitudes. We show that mid-IR fluxes are crucial for estimating bolometric magnitudes for stars with dusty envelopes and that the so-called luminosity problem of C stars (i.e. the suggestion that they are less luminous than predicted by models) does not appear to exist.
We present the results of our survey of 1612 MHz circumstellar OH maser emission from asymptotic giant branch (AGB) stars and red supergiants (RSGs) in the Large Magellanic Cloud. We have discovered four new circumstellar maser sources in the LMC, an d increased the number of reliable wind speeds from IR stars in the LMC from 5 to 13. Using our new wind speeds, as well as those from Galactic sources, we have derived an updated relation for dust driven winds: $v_{exp} propto Z L^{0.4}$. We compare the sub-solar metallicity LMC OH/IR stars with carefully selected samples of more metal-rich OH/IR stars, also at known distances, in the Galactic Centre and Galactic Bulge. For 8 of the Bulge stars we derive pulsation periods for the first time, using near-IR photometry from the VVV survey. We have modeled our LMC OH/IR stars and developed an empirical method of deriving gas-to-dust ratios and mass loss rates by scaling the models to the results from maser profiles. We have done this also for samples in the Galactic Centre and Bulge and derived a new mass loss prescription that includes luminosity, pulsation period, and gas-to-dust ratio $dot{M} = 1.06^{+3.5}_{-0.8} rm{ cdot }10^{-5},(L/10^4,rm{L}_odot)^{0.9pm0.1}(P/500,rm{d})^{0.75pm0.3} (r_{gd}/200)^{-0.03pm0.07},rm{M_{odot}}, yr^{-1}$. The tightest correlation is found between mass loss rate and luminosity. We find that the gas-to-dust ratio has little effect on the mass loss of oxygen-rich AGB stars and RSGs within the Galaxy and the LMC. This suggests that mass loss of oxygen-rich AGB stars and RSGs is (nearly) independent of metallicity between a half and twice solar.
Mass loss is an important activity for red supergiants (RSGs) which can influence their evolution and final fate. Previous estimations of mass loss rates (MLRs) of RSGs exhibit significant dispersion due to the difference in method and the incomplete ness of sample. With the improved quality and depth of the surveys including the UKIRT/WFCAM observation in near infrared, LGGS and PS1 in optical, a rather complete sample of RSGs is identified in M31 and M33 according to their brightness and colors. For about 2000 objects in either galaxy from this ever largest sample, the MLR is derived by fitting the observational optical-to-mid infrared spectral energy distribution (SED) with the DUSTY code of a 1-D dust radiative transfer model. The average MLR of RSGs is found to be around $2.0times10^{-5}{text{M}_odot}/text{yr}$ with a gas-to-dust ratio of 100, which yields a total contribution to the interstellar dust by RSGs of about $1.1times10^{-3}{text{M}_odot}/text{yr}$ in M31 and $6.0 times10^{-4}{text{M}_odot}/text{yr}$ in M33, a non-negligible source in comparison with evolved low-mass stars. The MLRs are divided into three types by the dust properties, i.e. amorphous silicate, amorphous carbon and optically thin, and the relations of MLR with stellar parameters, infrared flux and colors are discussed and compared with previous works for the silicate and carbon dust group respectively.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا