ترغب بنشر مسار تعليمي؟ اضغط هنا

The nature of strings in the nebula around Eta Carinae

96   0   0.0 ( 0 )
 نشر من قبل Kerstin Weis
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Eta Carinae is one of the most extreme cases of a Luminous Blue Variable star. A bipolar nebula of 17 size surrounds the central object. Even further out, a large amount of filamentary material extends to a distance of 30 or about 0.3 pc. In this paper we present a detailed kinematic and morphological analysis of some outer filaments in this nebula which we call strings. All strings are extremly long and narrow structures. We identified 5 strings which have sizes of 0.058 to 0.177 pc in length and a width of only 0.002 pc. Using high-resolution long-slit echelle spectroscopy it was found that the strings follow a Hubble law with velocities increasing towards larger distances from the star. With these unique properties, high collimation and linear increase of the radial velocity the strings represent a newly found phenomena in the structure and evolution of nebulae around LBVs. Finally, we show that morphologically similar strings can be found in the planetary nebula NGC 6543, a possible PN-counterpart to this phenomenon.



قيم البحث

اقرأ أيضاً

81 - M.P. Redman 2002
The narrow optical filaments (`strings or `spikes) emerging from the Homunculus of Eta Carinae are modelled as resulting from the passage of ballistic `bullets of material through the dense circumstellar environment. In this explanation, the string i s the decelerating flow of ablated gas from the bullet. An archive HST image and new forbidden line profiles of the most distinct of the strings are presented and discussed in terms of this simple model.
120 - M. Teodoro 2008
This work presents the first integral field spectroscopy of the Homunculus nebula around Eta Carinae in the near-infrared spectral region (J band). We confirmed the presence of a hole on the polar region of each lobe, as indicated by previous near-IR long-slit spectra and mid-IR images. The holes can be described as a cylinder of height (i.e. the thickness of the lobe) and diameter of 6.5 and 6.0x10^{16} cm, respectively. We also mapped the blue-shifted component of He I 10830 seen towards the NW lobe. Contrary to previous works, we suggested that this blue-shifted component is not related to the Paddle but it is indeed in the equatorial disc. We confirmed the claim of Smith (2005) and showed that the spatial extent of the Little Homunculus matches remarkably well the radio continuum emission at 3 cm, indicating that the Little Homunculus can be regarded as a small HII region. Therefore, we used the optically-thin 1.3 mm radio flux to derive a lower limit for the number of Lyman-continuum photons of the central source in Eta Car. In the context of a binary system, and assuming that the ionising flux comes entirely from the hot companion star, the lower limit for its spectral type and luminosity class ranges from O5.5 III to O7 I. Moreover, we showed that the radio peak at 1.7 arcsec NW from the central star is in the same line-of-sight of the `Sr-filament but they are obviously spatially separated, while the blue-shifted component of He I 10830 may be related to the radio peak and can be explained by the ultraviolet radiation from the companion star.
The outer ejecta is part of the nebula around Eta Carinae. They are filamentary, shaped irregularly and larger than the Homunculus, the central bipolar nebula. While the Homuculus is mainly a reflection nebula, the outer ejecta is an emission structu re. However, we showed with kinematic analysis that the outer ejecta (as the Homunculus) expands bi-directional despite of its complex morphology. Radial velocities in the outer ejecta reach up to 2000km/s and give rise to X-ray emission. An analysis showing the distribution of the soft X-ray emission and its comparison to the optical emitting gas is presented here. X-ray maxima are found in areas in which the expansion velocities are highest. The temperature of 0.65 keV determined with the CHANDRA/ACIS data and thermal equilibrium models indicates post-shock velocities of 750km/s, about what was found in the spectra. In addition analysis of the new HST-STIS data from the Strings--long, highly collimated structures in the outer ejecta--are presented. The data show that the electron density of the Strings is of the order of 10^4 cm^-3. The same value was detected for other structures in the outer ejecta. With this density String 1 has a mass of about 3 10^-4 M_sun and the total ejecta could be as massive as 0.5 M_sun.
Far-infrared Herschel PACS imaging and spectroscopic observations of the nebula around the luminous blue variable (LBV) star AG Car have been obtained along with optical imaging in the Halpha+[NII] filter. In the infrared light, the nebula appears as a clumpy ring shell that extends up to 1.2 pc with an inner radius of 0.4 pc. It coincides with the Halpha nebula, but extends further out. Dust modeling of the nebula was performed and indicates the presence of large grains. The dust mass is estimated to be ~ 0.2 Msun. The infrared spectrum of the nebula consists of forbidden emission lines over a dust continuum. Apart from ionized gas, these lines also indicate the existence of neutral gas in a photodissociation region that surrounds the ionized region. The abundance ratios point towards enrichment by processed material. The total mass of the nebula ejected from the central star amounts to ~ 15 Msun, assuming a dust-to-gas ratio typical of LBVs. The abundances and the mass-loss rate were used to constrain the evolutionary path of the central star and the epoch at which the nebula was ejected, with the help of available evolutionary models. This suggests an ejection during a cool LBV phase for a star of ~ 55 Msun with little rotation.
During the years 1838-1858, the very massive star {eta} Carinae became the prototype supernova impostor: it released nearly as much light as a supernova explosion and shed an impressive amount of mass, but survived as a star.1 Based on a light-echo s pectrum of that event, Rest et al.2 conclude that a new physical mechanism is required to explain it, because the gas outflow appears cooler than theoretical expectations. Here we note that (1) theory predicted a substantially lower temperature than they quoted, and (2) their inferred observational value is quite uncertain. Therefore, analyses so far do not reveal any significant contradiction between the observed spectrum and most previous discussions of the Great Eruption and its physics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا