ترغب بنشر مسار تعليمي؟ اضغط هنا

Resonant Cyclotron Radiation Transfer Model Fits to Spectra from Gamma-Ray Burst GRB870303

60   0   0.0 ( 0 )
 نشر من قبل Peter E. Freeman
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English
 تأليف P. E. Freeman




اسأل ChatGPT حول البحث

We demonstrate that models of resonant cyclotron radiation transfer in a strong field (i.e. cyclotron scattering) can account for spectral lines seen at two epochs, denoted S1 and S2, in the Ginga data for GRB870303. Using a generalized version of the Monte Carlo code of Wang et al. (1988,1989b), we model line formation by injecting continuum photons into a static plane-parallel slab of electrons threaded by a strong neutron star magnetic field (~ 10^12 G) which may be oriented at an arbitrary angle relative to the slab normal. We examine two source geometries, which we denote 1-0 and 1-1, with the numbers representing the relative electron column densities above and below the continuum photon source plane. We compare azimuthally symmetric models, i.e. models in which the magnetic field is parallel to the slab normal, with models having more general magnetic field orientations. If the bursting source has a simple dipole field, these two model classes represent line formation at the magnetic pole, or elsewhere on the stellar surface. We find that the data of S1 and S2, considered individually, are consistent with both geometries, and with all magnetic field orientations, with the exception that the S1 data clearly favor line formation away from a polar cap in the 1-1 geometry, with the best-fit model placing the line-forming region at the magnetic equator. Within both geometries, fits to the combined (S1+S2) data marginally favor models which feature equatorial line formation, and in which the observers orientation with respect to the slab changes between the two epochs. We interpret this change as being due to neutron star rotation, and we place limits on the rotation period.



قيم البحث

اقرأ أيضاً

74 - P. E. Freeman 1999
The Ginga data for the gamma-ray burst GRB870303 exhibit low-energy dips in two temporally distinct spectra, denoted S1 and S2. S1, spanning 4 s, exhibits a single line candidate at ~ 20 keV, while S2, spanning 9 s, exhibits apparently harmonically s paced line candidates at ~ 20 and 40 keV. We evaluate the statistical evidence for these lines, using phenomenological continuum and line models which in their details are independent of the distance scale to gamma-ray bursts. We employ the methodologies based on both frequentist and Bayesian statistical inference that we develop in Freeman et al. (1999b). These methodologies utilize the information present in the data to select the simplest model that adequately describes the data from among a wide range of continuum and continuum-plus-line(s) models. This ensures that the chosen model does not include free parameters that the data deem unnecessary and that would act to reduce the frequentist significance and Bayesian odds of the continuum-plus-line(s) model. We calculate the significance of the continuum-plus-line(s) models using the Chi-Square Maximum Likelihood Ratio test. We describe a parametrization of the exponentiated Gaussian absorption line shape that makes the probability surface in parameter space better-behaved, allowing us to estimate analytically the Bayesian odds. The significance of the continuum-plus-line models requested by the S1 and S2 data are 3.6 x 10^-5 and 1.7 x 10^-4 respectively, with the odds favoring them being 114:1 and 7:1. We also apply our methodology to the combined (S1+S2) data. The significance of the continuum-plus-lines model requested by the combined data is 4.2 x 10^-8, with the odds favoring it being 40,300:1.
Observations of thermonuclear X-ray bursts from accreting neutron stars (NSs) in low-mass X-ray binary systems can be used to constrain NS masses and radii. Most previous work of this type has set these constraints using Planck function fits as a pro xy: both the models and the data are fit with diluted blackbody functions to yield normalizations and temperatures which are then compared against each other. Here, for the first time, we fit atmosphere models of X-ray bursting NSs directly to the observed spectra. We present a hierarchical Bayesian fitting framework that uses state-of-the-art X-ray bursting NS atmosphere models with realistic opacities and relativistic exact Compton scattering kernels as a model for the surface emission. We test our approach against synthetic data, and find that for data that are well-described by our model we can obtain robust radius, mass, distance, and composition measurements. We then apply our technique to Rossi X-ray Timing Explorer observations of five hard-state X-ray bursts from 4U 1702-429. Our joint fit to all five bursts shows that the theoretical atmosphere models describe the data well but there are still some unmodeled features in the spectrum corresponding to a relative error of 1-5% of the energy flux. After marginalizing over this intrinsic scatter, we find that at 68% credibility the circumferential radius of the NS in 4U 1702-429 is R = 12.4+-0.4 km, the gravitational mass is M=1.9+-0.3 Msun, the distance is 5.1 < D/kpc < 6.2, and the hydrogen mass fraction is X < 0.09.
The origin of gamma-ray bursts (GRBs) has been enigmatic since their discovery. The situation improved dramatically in 1997, when the rapid availability of precise coordinates for the bursts allowed the detection of faint optical and radio afterglows - optical spectra thus obtained have demonstrated conclusively that the bursts occur at cosmological distances. But, despite efforts by several groups, optical detection has not hitherto been achieved during the brief duration of a burst. Here we report the detection of bright optical emission from GRB990123 while the burst was still in progress. Our observations begin 22 seconds after the onset of the burst and show an increase in brightness by a factor of 14 during the first 25 seconds; the brightness then declines by a factor of 100, at which point (700 seconds after the burst onset) it falls below our detection threshold. The redshift of this burst, approximately 1.6, implies a peak optical luminosity of 5 times 10^{49} erg per second. Optical emission from gamma-ray bursts has been generally thought to take place at the shock fronts generated by interaction of the primary energy source with the surrounding medium, where the gamma-rays might also be produced. The lack of a significant change in the gamma-ray light curve when the optical emission develops suggests that the gamma-rays are not produced at the shock front, but closer to the site of the original explosion.
Radiation transport codes are often used in astrophysics to construct spectral models. In this work we demonstrate how producing these models for a time series of data can provide unique information about supernovae (SNe). Unlike previous work, we sp ecifically concentrate on the method for obtaining the best synthetic spectral fits, and the errors associated with the preferred model parameters. We demonstrate how varying the ejecta mass, bolometric luminosity ($L_{bol}$) and photospheric velocity ($v_{ph}$), affects the outcome of the synthetic spectra. As an example we analyze the photospheric phase spectra of the GRB-SN,2016jca. It is found that for most epochs (where the afterglow subtraction is small) the error on $L_{bol}$ and $v_{ph}$ was $sim$5%. The uncertainty on ejecta mass and K.E. was found to be $sim$20%, although this can be expected to dramatically decrease if models of nebular phase data can be simultaneously produced. We also demonstrate how varying the elemental abundance in the ejecta can produce better synthetic spectral fits. In the case of SN,2016jca it is found that a decreasing $^{56}$Ni abundance as a function of decreasing velocity produces the best fit models. This could be the case if the $^{56}$Ni was sythesised at the side of the GRB jet, or dredged up from the centre of the explosion. The work presented here can be used as a guideline for future studies on supernovae which use the same or similar radiation transfer code.
The radiation from afterglows of gamma-ray bursts is generated in the collisionless plasma shock interface between a relativistic outflow and a quiescent circum-burst medium. The two main ingredients responsible for the radiation are high-energy, non -thermal electrons and a strong magnetic field. In this Letter we present, for the first time, synthetic spectra extracted directly from first principles particle-in-cell simulations of relativist collisionless plasma shocks. The spectra are generated by a numerical Fourier transformation of the electrical far-field from each of a large number of particles, sampled directly from the particle-in-cell simulations. Both the electromagnetic field and the non-thermal particle acceleration are self-consistent products of the Weibel two-stream instability. We find that the radiation spectrum from a $Gamma=15$ shock simulation show great resemblance with observed GRB spectra -- we compare specifically with that of GRB000301C.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا