ﻻ يوجد ملخص باللغة العربية
In AE Aqr, magnetic fields transfer energy and angular momentum from a rapidly spinning white dwarf to material in the gas stream from the companion star, with the effect of spinning down the white dwarf while flinging the gas stream material out of the binary system. This magnetic propeller produces a host of observable signatures, chief among which are broad single-peaked flaring emission lines with phase-shifted orbital kinematics. SW Sex stars have accretion disks, but also broad single-peaked phase-shifted emission lines similar to those seen in AE Aqr. We propose that a magnetic propeller similar to that which operates in AE Aqr is also at work in SW Sex stars -- and to some extent in all nova-like systems. The propeller is anchored in the inner accretion disk, rather than or in addition to the white dwarf. Energy and angular momentum are thereby extracted from the inner disk and transferred to gas stream material flowing above the disk, which is consequently pitched out of the system. This provides a non-local dissipationless angular momentum extraction mechanism, which should result in cool inner disks with temperature profiles flatter than $Tpropto R^{-3/4}$, as observed in eclipse mapping studies of nova-like variables. The disk-anchored magnetic propeller model appears to explain qualitatively most if not all of the peculiar features of the SW Sex syndrome.
We present time-resolved optical spectroscopy and photometry of the nova-like cataclysmic variable V348 Puppis. The system displays the same spectroscopic behaviour as SW Sex stars, so we classify V348 Pup as a new member of the class. V348 Pup is th
We conducted a spectroscopic and photometric study of SDSS J075653.11+085831. X-ray observations were also attempted. We determined the orbital period of this binary system to be 3.29 hr. It is a deep eclipsing system, whose spectra shows mostly sing
We report the detection of modulated circular polarization in V795 Her. The degree of polarization increases with wavelength and is modulated with a period of 19.54 min, which is very close to the reported optical QPO period. The modulation has a pea
We report on the discovery of variable circular polarization in the SW Sex star LS Pegasi. The observed modulation has an amplitude of ~0.3 % and a period of 29.6 minutes, which we assume as the spin period of the magnetic white dwarf. We also detect
Context: We present a new study of the eclipsing cataclysmic variable CzeV404 Her (Porb = 0.098 d) that is located in the period gap. Aims: This report determines the origin of the object and the system parameters and probes the accretion flow struct