ترغب بنشر مسار تعليمي؟ اضغط هنا

A nuclear grand-design spiral within the normal disc spiral of NGC 5248

133   0   0.0 ( 0 )
 نشر من قبل Seppo Laine
 تاريخ النشر 1998
  مجال البحث فيزياء
والبحث باللغة English
 تأليف S. Laine




اسأل ChatGPT حول البحث

No English abstract



قيم البحث

اقرأ أيضاً

We present for the first time a two-dimensional velocity field of the central region of the grand-design spiral galaxy NGC 5248, at 0.9 arcsec spatial resolution. The H-alpha velocity field is dominated by circular rotation. While no systematic strea ming motions are seen in the area of the nuclear grand-design spiral or the circumnuclear ring, the amplitude of residual velocities, after subtracting a model circular velocity field, reaches 20 km/s in projection. The rotation curve levels out at around 140 km/s, after a well-resolved and rather shallow rise. We have generated an analytical model for the nuclear spiral and fitted it to our observations to obtain estimates of the pattern speed of the spiral and the sound speed in the central region of NGC 5248. Our results are consistent with a low pattern speed, suggesting that the nuclear spiral rotates with the same rate as the main spiral structure in NGC 5248, and thus that the spiral structure is coupled from scales of a few hundred parsecs to several kiloparsecs. We have also compared the observed structure and kinematics between the nuclear regions of NGC 5248 and M100. Several similarities and differences are discussed, including the location of the peak emission regions on major and minor axes, and the spiral arm streaming motions. We find no kinematic evidence for a presence of a nuclear bar in NGC 5248.
We investigate how star formation is spatially organized in the grand-design spiral NGC 1566 from deep HST photometry with the Legacy ExtraGalactic UV Survey (LEGUS). Our contour-based clustering analysis reveals 890 distinct stellar conglomerations at various levels of significance. These star-forming complexes are organized in a hierarchical fashion with the larger congregations consisting of smaller structures, which themselves fragment into even smaller and more compact stellar groupings. Their size distribution, covering a wide range in length-scales, shows a power-law as expected from scale-free processes. We explain this shape with a simple fragmentation and enrichment model. The hierarchical morphology of the complexes is confirmed by their mass--size relation which can be represented by a power-law with a fractional exponent, analogous to that determined for fractal molecular clouds. The surface stellar density distribution of the complexes shows a log-normal shape similar to that for supersonic non-gravitating turbulent gas. Between 50 and 65 per cent of the recently-formed stars, as well as about 90 per cent of the young star clusters, are found inside the stellar complexes, located along the spiral arms. We find an age-difference between young stars inside the complexes and those in their direct vicinity in the arms of at least 10 Myr. This timescale may relate to the minimum time for stellar evaporation, although we cannot exclude the in situ formation of stars. As expected, star formation preferentially occurs in spiral arms. Our findings reveal turbulent-driven hierarchical star formation along the arms of a grand-design galaxy.
Theoretical studies on the response of interstellar gas to a gravitational potential disc with a quasi-stationary spiral arm pattern suggest that the gas experiences a sudden compression due to standing shock waves at spiral arms. This mechanism, cal led a galactic shock wave, predicts that gas spiral arms move from downstream to upstream of stellar arms with increasing radius inside a corotation radius. In order to investigate if this mechanism is at work in the grand-design spiral galaxy M51, we have measured azimuthal offsets between the peaks of stellar mass and gas mass distributions in its two spiral arms. The stellar mass distribution is created by the spatially resolved spectral energy distribution fitting to optical and near infrared images, while the gas mass distribution is obtained by high-resolution CO and HI data. For the inner region (r < 150), we find that one arm is consistent with the galactic shock while the other is not. For the outer region, results are less certain due to the narrower range of offset values, the weakness of stellar arms, and the smaller number of successful offset measurements. The results suggest that the nature of two inner spiral arms are different, which is likely due to an interaction with the companion galaxy.
We investigate how the properties of spiral arms relate to other fundamental galaxy properties. To this end, we use previously published measurements of those properties, and our own measurements of arm-interarm luminosity contrasts for a large sampl e of galaxies, using 3.6$mu$m images from the Spitzer Survey of Stellar Structure in Galaxies. Flocculent galaxies are clearly distinguished from other spiral arm classes, especially by their lower stellar mass and surface density. Multi-armed and grand-design galaxies are similar in most of their fundamental parameters, excluding some bar properties and the bulge-to-total luminosity ratio. Based on these results, we discuss dense, classical bulges as a necessary condition for standing spiral wave modes in grand-design galaxies. We further find a strong correlation between bulge-to-total ratio and bar contrast, and a weaker correlation between arm and bar contrasts.
We present high-resolution (30 mas or 130 au at 4.2 kpc) Atacama Large Millimeter/submillimeter Array observations at 1.2 mm of the disc around the forming O-type star AFGL 4176 mm1. The disc (AFGL 4176 mm1-main) has a radius of ~1000 au and contains significant structure, most notably a spiral arm on its redshifted side. We fitted the observed spiral with logarithmic and Archimedean spiral models. We find that both models can describe its structure, but the Archimedean spiral with a varying pitch angle fits its morphology marginally better. As well as signatures of rotation across the disc, we observe gas arcs in CH$_3$CN that connect to other millimetre continuum sources in the field, supporting the picture of interactions within a small cluster around AFGL 4176 mm1-main. Using local thermodynamic equilibrium modelling of the CH$_3$CN K-ladder, we determine the temperature and velocity field across the disc, and thus produce a map of the Toomre stability parameter. Our results indicate that the outer disc is gravitationally unstable and has already fragmented or is likely to fragment in the future, possibly producing further companions. These observations provide evidence that disc fragmentation is one possible pathway towards explaining the high fraction of multiple systems around high-mass stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا