ترغب بنشر مسار تعليمي؟ اضغط هنا

Collapsars - Gamma-Ray Bursts and Explosions in Failed Supernovae

37   0   0.0 ( 0 )
 نشر من قبل Andrew MacFadyen
 تاريخ النشر 1998
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using a two-dimensional hydrodynamics code (PROMETHEUS), we study the continued evolution of rotating massive helium stars whose iron core collapse does not produce a successful outgoing shock, but instead forms a black hole. We study the formation of a disk, the associated flow patterns, and the accretion rate for disk viscosity parameter, alpha ~ 0.001 and 0.1. For the standard 14 solar mass model the average accretion rate for 15 s is 0.07 solar masses per second and the total energy deposited along the rotational axes by neutrino annihilation is (1 - 14) x 10**51 erg, depending upon the evolution of the Kerr parameter and uncertain neutrino efficiencies. Simulated deposition of this energy in the polar regions results in strong relativistic outflow - jets beamed to about 1.5% of the sky. The jets remain highly focused, and are capable of penetrating the star in 5 - 10 s. After the jet breaks through the surface of the star, highly relativistic flow can commence. Because of the sensitivity of the mass ejection and jets to accretion rate, angular momentum, and disk viscosity, and the variation of observational consequences with viewing angle, a large range of outcomes is possible ranging from bright GRBs like GRB 971214 to faint GRB-supernovae like SN 1998bw. X-ray precursors are also possible as the jet first breaks out of the star. While only a small fraction of supernovae make GRBs, we predict that all GRBs longer than a few seconds will make supernovae similar to SN 1998bw. However, hard, energetic GRBs shorter than a few seconds will be difficult to make in this model.



قيم البحث

اقرأ أيضاً

213 - David Bersier 2012
The connection between long GRBs and supernovae is now well established. I briefly review the evidence in favor of this connection and summarise where we are observationally. I also use a few events to exemplify what should be done and what type of d ata are needed. I also look at what we can learn from looking at SNe not associated with GRBs and see how GRBs fit into the broad picture of stellar explosions.
132 - Maryam Modjaz 2012
While the connection between Long Gamma-Ray Bursts (GRBs) and Type Ib/c Supernovae (SNe Ib/c) from stripped stars has been well-established, one key outstanding question is what conditions and factors lead to each kind of explosion in massive strippe d stars. One promising line of attack is to investigate what sets apart SNe Ib/c with GRBs from those without GRBs. Here, I briefly present two observational studies that probe the SN properties and the environmental metallicities of SNe Ib/c (specifically broad-lined SNe Ic) with and without GRBs. I present an analysis of expansion velocities based on published spectra and on the homogeneous spectroscopic CfA data set of over 70 SNe of Types IIb, Ib, Ic and Ic-bl, which triples the world supply of well-observed Stripped SNe. Moreover, I demonstrate that a meta-analysis of the three published SN Ib/c metallicity data sets, when including only values at the SN positions to probe natal oxygen abundances, indicates at very high significance that indeed SNe Ic erupt from more metal-rich environments than SNe Ib, while SNe Ic-bl with GRBs still prefer, on average, more metal-poor sites than those without GRBs.
95 - D. Watson 2007
There is strong evidence that long duration gamma-ray bursts (GRBs) are produced during the collapse of a massive star. In the standard version of the Collapsar model, a broad-lined and luminous Type Ic core-collapse supernova (SN) accompanies the GR B. This association has been confirmed in observations of several nearby GRBs. Recent observations show that some long duration GRBs are different. No SN emission accompanied the long duration GRBs 060505 and 060614 down to limits fainter than any known Type Ic SN and hundreds of times fainter than the archetypal SN1998bw that accompanied GRB980425. Multi-band observations of the early afterglows, as well as spectroscopy of the host galaxies, exclude the possibility of significant dust obscuration. Furthermore, the bursts originated in star-forming galaxies, and in the case of GRBs060505 the burst was localised to a compact star-forming knot in a spiral arm of its host galaxy. We find that the properties of the host galaxies, the long duration of the bursts and, in the case of GRB060505 the location of the burst within its host, all imply a massive stellar origin. The absence of a SN to such deep limits therefore suggests a new phenomenological type of massive stellar death.
58 - Hideyuki Umeda 1999
It is generally believed that cosmological Gamma Ray Bursts (GRBs) are produced by the deceleration of relativistic objects with Lorentz factor (Gamma) >~ 100. We study the possibility that some GRBs are produced along with relativistic matter ejec tion from supernovae. In this model, it is quite likely that the matter has to travel through the progenitors thick envelope before generating GRBs. Under the assumption that the ejected matter is described as a single collective matter, we obtain constraints on the matter to have Gamma >~ 100 at the breakout of the progenitor. One advantage of considering this type of model is that the expected GRB energy is sufficiently large, in contrast to the GRB generation model by the shock breakout in the energetic supernova explosion. We find that in general the cross section of the matter has to be very small compared with the progenitors radius and thus the matter has to be bullet (or jet)-like rather than shell-like.
When massive stars exhaust their fuel they collapse and often produce the extraordinarily bright explosions known as core-collapse supernovae. On occasion, this stellar collapse also powers an even more brilliant relativistic explosion known as a lon g-duration gamma-ray burst. One would then expect that long gamma-ray bursts and core-collapse supernovae should be found in similar galactic environments. Here we show that this expectation is wrong. We find that the long gamma-ray bursts are far more concentrated on the very brightest regions of their host galaxies than are the core-collapse supernovae. Furthermore, the host galaxies of the long gamma-ray bursts are significantly fainter and more irregular than the hosts of the core-collapse supernovae. Together these results suggest that long-duration gamma-ray bursts are associated with the most massive stars and may be restricted to galaxies of limited chemical evolution. Our results directly imply that long gamma-ray bursts are relatively rare in galaxies such as our own Milky Way.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا