ترغب بنشر مسار تعليمي؟ اضغط هنا

An Infrared Einstein Ring in the Gravitational Lens PG 1115+080

125   0   0.0 ( 0 )
 نشر من قبل Chris Impey
 تاريخ النشر 1998
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Hubble Space Telescope observations of the gravitational lens PG 1115+080 in the infrared show the known z =0.310 lens galaxy and reveal the z = 1.722 quasar host galaxy. The main lens galaxy G is a nearly circular (ellipticity < 0.07) elliptical galaxy with a de Vaucouleurs profile and an effective radius of R_e = 0.59 +/- 0.06 arcsec (1.7 +/- 0.2 h^{-1} kpc for Omega = 1 and h = H_0/100 km/s/Mpc). G is part of a group of galaxies that is a required component of all successful lens models. The new quasar and lens positions (3 milliarcsecond errors) yield constraints for these models that are statistically degenerate, but several conclusions are firmly established. (1) The principal lens galaxy is an elliptical galaxy with normal structural properties, lying close to the fundamental plane for its redshift. (2) The potential of the main lens galaxy is nearly round, even when not constrained by the small ellipticity of the light of this galaxy. (3) All models involving two mass distributions place the group component near the luminosity-weighted centroid of the brightest nearby group members. (4) All models predict a time delay ratio r_{ABC} = 1.3. (5) Our lens models predict H_0 = 44 +/- 4 km/s/Mpc if the lens galaxy contains dark matter and has a flat rotation curve, and H_0 = 65 +/- 5 km/s/Mpc if it has a constant mass-to-light ratio. (6) Any dark halo of the main lens galaxy must be truncated near 1.5 arcsec (4 h^{-1} kpc) before the inferred Ho rises above 60 km/s/Mpc. (7) The quasar host galaxy is lensed into an Einstein ring connecting the four quasar images, whose shape is reproduced by the models. Improved NICMOS imaging of the ring could be used to break the degeneracy of the lens models.



قيم البحث

اقرأ أيضاً

We analyzed the microlensing of the X-ray and optical emission of the lensed quasar PG 1115+080. We find that the effective radius of the X-ray emission is 1.3(+1.1 -0.5) dex smaller than that of the optical emission. Viewed as a thin disk observed a t inclination angle i, the optical accretion disk has a scale length, defined by the point where the disk temperature matches the rest frame energy of the monitoring band (kT=hc/lambda_rest with lambda_rest=0.3 micron), of log[(r_{s,opt}/cm)(cos(i) / 0.5)^{1/2}] = 16.6 pm 0.4. The X-ray emission region (1.4-21.8 keV in the rest frame) has an effective half-light radius of log[r_{1/2,X}/cm] = 15.6 (+0.6-0.9}. Given an estimated black hole mass of 1.2 * 10^9 M_sun, corresponding to a gravitational radius of log[r_g/cm] = 14.3, the X-ray emission is generated near the inner edge of the disk while the optical emission comes from scales slightly larger than those expected for an Eddington-limited thin disk. We find a weak trend supporting models with low stellar mass fractions near the lensed images, in mild contradiction to inferences from the stellar velocity dispersion and the time delays.
We present time-delay estimates for the quadruply imaged quasar PG 1115+080. Our resuls are based on almost daily observations for seven months at the ESO MPIA 2.2m telescope at La Silla Observatory, reaching a signal-to-noise ratio of about 1000 per quasar image. In addition, we re-analyse existing light curves from the literature that we complete with an additional three seasons of monitoring with the Mercator telescope at La Palma Observatory. When exploring the possible source of bias we consider the so-called microlensing time delay, a potential source of systematic error so far never directly accounted for in previous time-delay publications. In fifteen years of data on PG 1115+080, we find no strong evidence of microlensing time delay. Therefore not accounting for this effect, our time-delay estimates on the individual data sets are in good agreement with each other and with the literature. Combining the data sets, we obtain the most precise time-delay estimates to date on PG 1115+080, with Dt(AB) = 8.3+1.5-1.6 days (18.7% precision), Dt(AC) = 9.9+1.1-1.1 days (11.1%) and Dt(BC) = 18.8+1.6-1.6 days (8.5%). Turning these time delays into cosmological constraints is done in a companion paper that makes use of ground-based Adaptive Optics (AO) with the Keck telescope.
60 - F. Courbin 1997
Time delay measurements have recently been reported for the lensed quasar PG 1115+080. These measurements can be used to derive Ho, but only if we can constrain the lensing potential. We have applied a recently developed deconvolution technique to an alyse sub-arcsecond I band images of PG 1115+080, obtained at the Nordic Optical Telescope (NOT) and the Canada France Hawaii Telescope (CFHT). The high performance of the deconvolution code allows us to derive precise positions and magnitudes for the four lensed images of the quasar, as well as for the lensing galaxy. The new measurement of the galaxy position improves its precision by a factor of 3 and thus strengthens the constraints on the lensing potential. With the new data, a range of models incorporating some of the plausible systematic uncertainties yields Ho = 53 (+10/-7) km/s/mpc.
We report the discovery, using NICMOS on the Hubble Space Telescope, of an arcsecond-diameter Einstein ring in the gravitational lens system B1938+666. The lensing galaxy is also detected, and is most likely an early-type. Modelling of the ring is pr esented and compared with the radio structure from MERLIN maps. We show that the Einstein ring is consistent with the gravitational lensing of an extended infrared component, centred between the two radio components.
51 - C. S. Kochanek 1998
We have obtained and modeled new NICMOS images of the lens system MG1131+0456, which show that its lens galaxy is an H=18.6 mag, transparent, early-type galaxy at a redshift of about z_l = 0.85; it has a major axis effective radius R_e=0.68+/-0.05 ar csec, projected axis ratio b/a=0.77+/-0.02, and major axis PA=60+/-2 degrees. The lens is the brightest member of a group of seven galaxies with similar R-I and I-H colors, and the two closest group members produce sufficient tidal perturbations to explain the ring morphology. The host galaxy of the MG1131+0456 source is a z_s > 2 ERO (``extremely red object) which is lensed into optical and infrared rings of dramatically different morphologies. These differences imply a strongly wavelength-dependent source morphology that could be explained by embedding the host in a larger, dusty disk. At 1.6 micron (H), the ring is spectacularly luminous, with a total observed flux of H=17.4 mag and a de-magnified flux of 19.3 mag, corresponding to a 1-2L_* galaxy at the probable source redshift of z_s > 2. Thus, it is primarily the stellar emission of the radio source host galaxy that produces the overall colors of two of the reddest radio lenses, MG1131+0456 and B~1938+666, aided by the suppression of optical AGN emission by dust in the source galaxy. The dusty lens hypothesis -- that many massive early-type galaxies with 0.2 < z_l < 1.0 have large, uniform dust opacities -- is ruled out.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا