ﻻ يوجد ملخص باللغة العربية
Centaurus X-3 is a well-studied high-mass accreting X-ray binary and a variable source of high energy gamma rays with energies from 100 MeV to 1 TeV. Previous results have suggested that the origin of the gamma rays is not the immediate vicinity of the neutron star but is sited in the accretion disc, perhaps in an accretion wake. The Durham Mark 6 gamma ray telescope has been used to measure the gamma ray flux from Centaurus X-3 with much higher sensitivity than previous ground-based measurements. The flux above ~ 400 GeV was measured to be (2 +/- 0.3) x 10^-11 cm^-2 s^-1 and appears constant over a period of 2 - 3 months. In 10 hours of observations there is no evidence for periodicity in the detected gamma rays at the X-ray spin period either from a site in the region of the neutron star, or from any other potential site in the orbit.
The Very High Energy Gamma Ray Astronomy (VHE) is a rapidly evolving branch of modern astronomy, which covers the range from about 50 GeV to several tens of TeV from the ground. In the past years, the second generation instruments firmly established
We present the results of a study that simulates trajectories of ultra-high energy cosmic rays from Centaurus A to Earth, for particle rigidities from $E/Z = 2$ EV to 100 EV, i.e., covering the possibility of primary particles as heavy as Fe nuclei w
We report the discovery of faint very high energy (VHE, E > 100 GeV) gamma-ray emission from the radio galaxy Centaurus A in deep observations performed with the H.E.S.S. experiment. A signal with a statistical significance of 5.0 sigma is detected f
The Pierre Auger Observatory has associated a few ultra high energy cosmic rays with the direction of Centaurus A. This source has been deeply studied in radio, infrared, X-ray and $gamma$-rays (MeV-TeV) because it is the nearest radio-loud active ga
In this work we study how the cosmological parameter, the Hubble constant $H_0$, can be constrained by observation of very high energy (VHE) $gamma$-rays at the TeV scale. The VHE $gamma$-rays experience attenuation by background radiation field thro