ترغب بنشر مسار تعليمي؟ اضغط هنا

The Edinburgh-Durham Southern Galaxy Catalogue - VIII: The Cluster Galaxy Luminosity Function

53   0   0.0 ( 0 )
 نشر من قبل Stuart Lumsden
 تاريخ النشر 1997
  مجال البحث فيزياء
والبحث باللغة English
 تأليف S. L. Lumsden




اسأل ChatGPT حول البحث

We have re-examined the nature of the cluster galaxy luminosity function using the data from the Edinburgh-Durham Southern Galaxy Catalogue and the Edinburgh-Milano Redshift Survey. We derive a best fit luminosity function over the range M(bj)=-18 to -21, for a composite sample of 22 of the richer clusters that has M*=-20.16+/-0.02 and alpha=-1.22+/-0.04. The dominant error in these values results from the choice of background subtraction method. From extensive simulations we can show that when the LF is fitted over this narrow range, it is difficult to discriminate against bright values of M*in the single cluster fits, but that faint values provide a strong test of the universality of the luminosity function. We find that all the individual cluster data are well fit by a Schechter function with alpha fixed at -1.25, and that <=10% of these have fitted values of M* that disagree from the average at the 99% confidence level. We further show that fitting only a single parameter Schechter function to composite subsets of the data can give erroneous results for the derived M*. By considering two parameter fits, the results of Monte-Carlo simulations and direct two-sample chi-squared tests we conclude that there is only weak evidence for differences between the data when broken down into subsets based on physical properties (Bautz-Morgan class, richness, velocity dispersion): from our simulations, only the evidence for a difference between subsets based on velocity dispersion may in fact be significant. We find no evidence at all that a Schechter function is not a good model for the intrinsic cluster luminosity function over this absolute magnitude range. Models that invoke strong evolution of galaxy luminosity of all galaxies within clusters are inconsistent with our results.



قيم البحث

اقرأ أيضاً

We present the analysis of the luminosity function of a large sample of galaxy clusters from the Northern Sky Optical Cluster Survey, using latest data from the Sloan Digital Sky Survey. Our global luminosity function (down to M_r<= -16) does not sho w the presence of an upturn at faint magnitudes, while we do observe a strong dependence of its shape on both richness and cluster-centric radius, with a brightening of M^* and an increase of the dwarf to giant ratio with richness, indicating that more massive systems are more efficient in creating/retaining a population of dwarf satellites. This is observed both within physical (0.5 R_200) and fixed (0.5 Mpc) apertures, suggesting that the trend is either due to a global effect, operating at all scales, or to a local one but operating on even smaller scales. We further observe a decrease of the relative number of dwarf galaxies towards the cluster center; this is most probably due to tidal collisions or collisional disruption of the dwarfs since merging processes are inhibited by the high velocity dispersions in cluster cores and, furthermore, we do not observe a strong dependence of the bright end on the environment. We find indication that the dwarf to giant ratio decreases with increasing redshift, within 0.07<z<0.2. We also measure a trend for stronger suppression of faint galaxies (below M^*+2) with increasing redshift in poor systems, with respect to more massive ones, indicating that the evolutionary stage of less massive galaxies depends more critically on the environment. Finally we point out that the luminosity function is far from universal; hence the uncertainties introduced by the different methods used to build a composite function may partially explain the variety of faint-end slopes reported in the literature as well as, in some cases, the presence of a faint-end upturn.
The X-ray galaxy cluster sample from the REFLEX Cluster Survey, which covers the X-ray brightest galaxy clusters detected in the ROSAT All-Sky Survey in the southern sky, is used to construct the X-ray luminosity function of clusters in the local Uni verse. With 452 clusters detected above an X-ray flux-limit of 3 10^(-12) erg s^(-1) cm^(-2) in 4.24 sr of the sky, this sample is the most comprehensive X-ray cluster sample with a well documented selection function, providing the best current census of the local X-ray galaxy cluster population. In this paper we discuss the construction of the luminosity function, the effects of flux measurement errors and of variations with sample region and we compare the results to those from previous surveys.
We have determined the composite luminosity function (LF) for galaxies in 60 clusters from the 2dF Galaxy Redshift Survey. The LF spans the range $-22.5<M_{b_{rm J}}<-15$, and is well-fitted by a Schechter function with ${M_{b_{rm J}}}^{*}=-20.07pm0. 07$ and $alpha=-1.28pm0.03$ ($H_0$=100 km s$^{-1}$ Mpc$^{-1}$, $Omega_M$=0.3, $Omega_Lambda$=0.7). It differs significantly from the field LF of cite{mad02}, having a characteristic magnitude that is approximately 0.3 mag brighter and a faint-end slope that is approximately 0.1 steeper. There is no evidence for variations in the LF across a wide range of cluster properties. However the LF of early-type galaxies in clusters is both brighter and steeper than its field counterpart. The differences between the field and cluster LFs for the various spectral types can be qualitatively explained by the suppression of star formation in the dense cluster environment, together with mergers to produce the brightest early-type galaxies.
206 - C.S. Kochanek 2000
We measured the K-band luminosity function using a complete sample of 4192 morphologically-typed 2MASS galaxies with 7 < K < 11.25 mag spread over 2.12 str. Early-type (T < -0.5) and late-type (T > -0.5) galaxies have similarly shaped luminosity func tions, alpha_e=-0.92+/-0.10 and alpha_l=-0.87+/-0.09. The early-type galaxies are brighter, M_*e=-23.53+/-0.06 mag compared to M_*l=-22.98pm0.06 mag, but less numerous, n_*e=(0.0045+/-0.0006)h^3/Mpc^3 compared to n_*l=(0.0101+/-0.0013)h^3/Mpc^3 for H_0=100h km/s Mpc, such that the late-type galaxies slightly dominate the K-band luminosity density, j_late/j_early=1.17+/-0.12. Our morphological classifications are internally consistent, consistent with previous classifications and lead to luminosity functions unaffected by the estimated uncertainties in the classifications. These luminosity functions accurately predict the K-band number counts and redshift distributions for K < 18 mag, beyond which the results depend on galaxy evolution and merger histories.
We measure the faint end slope of the galaxy luminosity function (LF) for cluster galaxies at 1<z<1.5 using Spitzer IRAC data. We investigate whether this slope, alpha, differs from that of the field LF at these redshifts, and with the cluster LF at low redshifts. The latter is of particular interest as low-luminosity galaxies are expected to undergo significant evolution. We use seven high-redshift spectroscopically confirmed galaxy clusters drawn from the IRAC Shallow Cluster Survey to measure the cluster galaxy LF down to depths of M* + 3 (3.6 microns) and M* + 2.5 (4.5 microns). The summed LF at our median cluster redshift (z=1.35) is well fit by a Schechter distribution with alpha[3.6] = -0.97 +/- 0.14 and alpha[4.5] = -0.91 +/- 0.28, consistent with a flat faint end slope and is in agreement with measurements of the field LF in similar bands at these redshifts. A comparison to alpha in low-redshift clusters finds no statistically significant evidence of evolution. Combined with past studies which show that M* is passively evolving out to z~1.3, this means that the shape of the cluster LF is largely in place by z~1.3. This suggests that the processes that govern the build up of the mass of low-mass cluster galaxies have no net effect on the faint end slope of the cluster LF at z<1.3.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا