ﻻ يوجد ملخص باللغة العربية
(Abridged) A simple quantitative model is presented for the history of galaxies to explain galaxy number counts, redshift distributions and some other related observations. We first infer that irregular galaxies and the disks of spiral galaxies are young, probably formed at $zapprox 0.5-2$ from a simultaneous consideration of colours and gas content under a moderate assumption on the star formation history. Assuming that elliptical galaxies and bulges of spiral galaxies, both called spheroids in the discussion, had formed early in the universe, the resulting scenario is that spiral galaxies formed as intergalactic gas accreting onto pre-existing bulges mostly at $zapprox 1-2$; irregular galaxies as seen today formed by aggregation of clouds at $zapprox 0.5-1.5$. Taking the formation epochs thus estimated into account, we construct a model for the history of galaxies employing a stellar population synthesis model. We assume that the number of galaxies does not change except that some of them (irregulars) were newly born, and use a morphology-dependent local luminosity function to constrain the number of galaxies. The predictions of the model are compared with the observation of galaxy number counts and redshift distributions for the $B$, $I$ and $K$ colour bands. It is shown that young irregular galaxies cause the steep slope of the $B$-band counts. The fraction of irregular galaxies increases with decreasing brightness: at $B=24$ mag, they contribute as much as spiral galaxies. Thus, ``the faint blue galaxy problem is solved by invoking young galaxies. This interpretation is corroborated by a comparison of our prediction with the morphologically-classified galaxy counts in the $I$ band.
The far-ultraviolet (FUV) number counts of galaxies constrain the evolution of the star-formation rate density of the universe. We report the FUV number counts computed from FUV imaging of several fields including the Hubble Ultra Deep Field, the Hub
We use the number counts of X-ray selected normal galaxies to explore their evolution by combining the most recent wide-angle shallow and pencil-beam deep samples available. The differential X-ray number counts, dN/dS, for early and late-type normal
We derive and test an approximation for the angular power spectrum of galaxy number counts in the flat sky limit. The standard density and redshift space distortion (RSD) terms in the resulting approximation are distinct to the Limber approximation,
We present a fully nonlinear and relativistically covariant expression for the observed galaxy density contrast. Building on a null tetrad tailored to the cosmological observers past light cone, we find a decomposition of the nonlinear galaxy over-de
(abridged) A detailed comparison is performed of the LFs compiled at infrared, radio and optical wavelengths and converted into XLFs using available relations with the XLF directly estimated in the 0.5--2 keV energy band from X-ray surveys (Norman et