ﻻ يوجد ملخص باللغة العربية
To elucidate the dust properties in the SMC we have for the first time measured linear polarization in five colors in the optical region of the spectrum for a sample of reddened stars. For two of these stars, for which there were no existing UV spectrophotometric measurements, but for which we measured a relatively large polarization, we have also obtained data from the International Ultraviolet Explorer (IUE) in order to study the extinction. The main results are: (1) the wavelength of maximum polarization, $lambda_{max}$, in the SMC is typically smaller than that in the Galaxy; (2) however, AZV 456, which shows the UV extinction bump, has a $lambda_{max}$ typical of that in the Galaxy, its polarization curve is narrower, its bump is shifted to shorter wavelengths as compared to the Galaxy and its UV extinction does not conform to the Galactic analytical interpolation curve based on the ratio of total to selective extinction; (3) the typical, monotonic SMC extinction curve can be best fit with amorphous carbon and silicate grains; (4) the extinction towards AZV456 may only be explained by assuming a larger gas-to-dust ratio than the observed N(HI)/A(V) value, with a small amount of the available carbon in graphite form; (5) from an analysis of both the extinction and polarization data and our model fits it appears that the SMC has typically smaller grains than those in the Galaxy.
We examine the three-dimensional structure and dust extinction properties in a ~ 200 pc $times$ 100 pc region in the southwest bar of the Small Magellanic Cloud (SMC). We model a deep Hubble Space Telescope optical color-magnitude diagram (CMD) of re
We use Hubble Space Telescope (HST) observations of red clump stars taken as part of the Small Magellanic Cloud Investigation of Dust and Gas Evolution (SMIDGE) program to measure the average dust extinction curve in a ~ 200 pc x 100 pc region in the
In order to understand the evolution of the interstellar medium (ISM) of a galaxy, we have analysed the gas and dust budget of the Small Magellanic Cloud (SMC). Using the Spitzer Space Telescope, we measured the integrated gas mass-loss rate across a
The Tail region of the Small Magellanic Cloud (SMC) was imaged using the MIPS instrument on the Spitzer Space Telescope as part of the SAGE-SMC Spitzer Legacy. Diffuse infrared emission from dust was detected in all the MIPS bands. The Tail gas-to-du
We present an analysis of dust grain emission in the diffuse interstellar medium of the Small Magellanic Cloud (SMC). This study is motivated by the availability of 170 microns ISOPHOT data covering a large part of the SMC, with a resolution enabling