ﻻ يوجد ملخص باللغة العربية
We report the discovery of a new gravitationally lensed radio source. Radio maps of MG0751+2716 show four lensed images, which, at higher resolution, are resolved into long arcs of emission. A group of galaxies is present in optical images, including the principal lensing galaxy, with a much brighter galaxy just a few arcseconds away. We have measured the redshift of this brighter galaxy. No optical counterpart to the background source has been detected. Lens models that can readily reproduce the lensed image positions all require a substantial shear component. However, neither the very elongated lens nor the bright nearby galaxy are correctly positioned to explain the shear. Lens models which associate the mass with the light of galaxies in the group can produce an acceptable fit, but only with an extreme mass-to-light ratio in one of the minor group members.
High-precision cosmological probes have revealed a small but significant tension between the parameters measured with different techniques, among which there is one based on time delays in gravitational lenses. We discuss a new way of using time dela
We performed an automated comparison of the FIRST radio survey with the APM optical catalog to find radio lobes with optical counterparts. Based on an initial survey covering ~3000 square degrees, we selected a sample of 33 lens candidates for VLA co
We present an image of the redshift 2.3 IRAS source FSC10214+4724 at 0.8 microns obtained with the HST WFPC2 Planetary Camera. The source appears as an unresolved (< 0.06) arc 0.7 long, with significant substructure along its length. The arc is cente
The radio-loud quasar PMN J0134-0931 was discovered to have an unusual morphology during our search for gravitational lenses. In VLA and MERLIN images, there are 5 compact components with maximum separation 681 millarcseconds. All of these components
This paper proposes to exploit gravitational lensing effects to improve the sensitivity of neutrino telescopes to the intrinsic neutrino emission of distant blazar populations. This strategy is illustrated with a search for cosmic neutrinos in the di