ﻻ يوجد ملخص باللغة العربية
We examine whether existing data in clusters, both old and young, and in the field of the Galactic disk and halo is consistent with a universal slope for the initial mass function (IMF). The most reasonable statement that can be made at the current time is that there is no strong evidence to support a claim of any real variations in this slope. If the IMF slope is universal then this in itself is remarkable implying that variations in metallicity, gas density or other environmental factors in the star formation process play no part in determining the slope of the mass function.
Boomerang, Maxima, DASI, CBI and VSA significantly increase the case for accelerated expansion in the early universe (the inflationary paradigm) and at the current epoch (dark energy dominance), especially when combined with data on high redshift sup
Stars form from dense molecular cores, and the mass function of these cores (the CMF) is often found to be similar to the form of the stellar initial mass function (IMF). This suggests that the form of the IMF is the result of the form of the CMF. Ho
In this overview I sketch briefly the path to the so-called {em t-J model} derived for the first time 30 years ago and provide its original meaning within the theory of strongly correlated magnetic metals with a non-Fermi (non-Landau) liquid ground s
We review recent advances in our understanding of the origin of the initial mass function (IMF). We emphasize the use of numerical simulations to investigate how each physical process involved in star formation affects the resulting IMF. We stress th
We have studied the star formation history and the initial mass function (IMF) using the age and mass derived from spectral energy distribution (SED) fitting and from color-magnitude diagrams. We also examined the physical and structural parameters o