ترغب بنشر مسار تعليمي؟ اضغط هنا

The Second Measurement of Anisotropy in the Cosmic Microwave Background Radiation at 0fdg5 Scales near the Star Mu Pegasi

50   0   0.0 ( 0 )
 نشر من قبل ul
 تاريخ النشر 1996
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

During the fifth flight of the Microwave Anisotropy Experiment (MAX5), we revisited a region with significant dust emission near the star Mu Pegasi. A 3.5 cm$^{-1}$ low frequency channel has been added since the previous measurement (cite{mei93a}). The data in each channel clearly show structure correlated with IRAS 100 micron dust emission. The spectrum of the structure in the 6, 9 and 14 cm$^{-1}$ channels is described by $I_{ u}propto u^{beta}B_{ u}(T_{dust})$, where $beta$ = 1.3 and $T_{dust}$ = 19~K and $B_{ u}$ is the Planck function. However, this model predicts a smaller amplitude in the 3.5 cm$^{-1}$ band than is observed. Considering only linear combinations of the data independent of the best fit foreground spectrum for the three lower channels, we find an upper limit to CMBR fluctuations of $Delta T/T = langle frac{C_l~l(l+1)}{2pi}rangle^{frac{1}{2}} leq 1.3times 10^{-5}$ at the 95% confidence level. The result is for a flat band power spectrum and does not include a 10% uncertainty in calibration. It is consistent with our previous observation in the region.



قيم البحث

اقرأ أيضاً

We present results from a four frequency observation of a 6 x 0.6 degree strip of the sky centered near the star Gamma Ursae Minoris during the fourth flight of the Millimeter-wave Anisotropy eXperiment (MAX). The observation was made with a 1.4 degr ee peak-to-peak sinusoidal chop in all bands. The FWHM beam sizes were 0.55 +/- 0.05 degrees at 3.5 cm-1 and 0.75 +/-0.05 degrees at 6, 9, and 14 cm-1. During this observation significant correlated structure was observed at 3.5, 6 and 9 cm-1 with amplitudes similar to those observed in the GUM region during the second and third flights of MAX. The frequency spectrum is consistent with CMB and inconsistent with thermal emission from interstellar dust. The extrapolated amplitudes of synchrotron and free-free emission are too small to account for the amplitude of the observed structure. If all of the structure is attributed to CMB anisotropy with a Gaussian autocorrelation function and a coherence angle of 25, then the most probable values of DeltaT/TCMB in the 3.5, 6, and 9 cm-1 bands are 4.3 (+2.7, -1.6) x 10-5, 2.8 (+4.3, -1.1) x 10-5, and 3.5 (+3.0, -1.6) x 10-5 (95% confidence upper and lower limits), respectively.
Observations from the first flight of the Medium Scale Anisotropy Measurement (MSAM) are analyzed to place limits on Gaussian fluctuations in the Cosmic Microwave Background Radiation (CMBR). This instrument chops a 30arcmin beam in a 3 position patt ern with a throw of $pm40arcmin$; the resulting data is analyzed in statistically independent single and double difference datasets. We observe in four spectral channels at 5.6, 9.0, 16.5, and 22.5~icm, allowing the separation of interstellar dust emission from CMBR fluctuations. The dust component is correlated with the IRAS 100~micron map. The CMBR component has two regions where the signature of an unresolved source is seen. Rejecting these two source regions, we obtain a detection of fluctuations which match CMBR in our spectral bands of $0.6 times 10^{-5} < Delta T/T < 2.2 times 10^{-5}$ (90% CL interval) for total rms Gaussian fluctuations with correlation angle 0fdg5, using the single difference demodulation. For the double difference demodulation, the result is $1.1 times 10^{-5} < Delta T/T < 3.1 times 10^{-5}$ (90% CL interval) at a correlation angle of 0fdg3.
130 - K. Coble , M. Dragovan , J. Kovac 1999
Observations of the microwave sky using the Python telescope in its fifth season of operation at the Amundsen-Scott South Pole Station in Antarctica are presented. The system consists of a 0.75 m off-axis telescope instrumented with a HEMT amplifier- based radiometer having continuum sensitivity from 37-45 GHz in two frequency bands. With a 0.91 deg x 1.02 deg beam the instrument fully sampled 598 deg^2 of sky, including fields measured during the previous four seasons of Python observations. Interpreting the observed fluctuations as anisotropy in the cosmic microwave background, we place constraints on the angular power spectrum of fluctuations in eight multipole bands up to l ~ 260. The observed spectrum is consistent with both the COBE experiment and previous Python results. There is no significant contamination from known foregrounds. The results show a discernible rise in the angular power spectrum from large (l ~ 40) to small (l ~ 200) angular scales. The shape of the observed power spectrum is not a simple linear rise but has a sharply increasing slope starting at l ~ 150.
The second flight of the Medium Scale Anisotropy Measurement (MSAM1-94) observed the same field as the first flight (MSAM1-92) to confirm our earlier measurement of cosmic microwave background radiation (CMBR) anisotropy. This instrument chops a 30ar cmin beam in a 3 position pattern with a throw of $pm40arcmin$, and simultaneously measures single and double differenced sky signals. We observe in four spectral channels centered at 5.6, 9.0, 16.5, and 22.5~icm, providing sensitivity to the peak of the CMBR and to thermal emission from interstellar dust. The dust component correlates well with the IRAS 100~micron map. The CMBR observations in our double difference channel correlate well with the earlier observations, but the single difference channel shows some discrepancies. We obtain a detection of fluctuations in the MSAM1-94 dataset that match CMBR in our spectral bands of $Delta T/T = 1.9^{+1.3}_{-0.7}times 10^{-5}$ (90% confidence interval, including calibration uncertainty) for total rms Gaussian fluctuations with correlation angle 0fdg3, using the double difference demodulation.
BOOMERanG has recently resolved structures on the last scattering surface at redshift $sim$ 1100 with high signal to noise ratio. We review the technical advances which made this possible, and we focus on the current results for maps and power spectr a, with special attention to the determination of the total mass-energy density in the Universe and of other cosmological parameters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا