ﻻ يوجد ملخص باللغة العربية
The goal of the second flight of the Medium Scale Anisotropy Measurement (MSAM1-94) was to confirm the measurement of cosmic microwave background radiation (CMBR) anisotropy made in the first flight (MSAM1-92). The CMBR anisotropy and interstellar dust emission signals from the two flights are compared by forming the sum and difference of those portions of the data with the same pointings on the sky. The difference data are consistent with a null detection, while the summed data show significant signal. We conclude that MSAM1-92 and MSAM1-94 measured the same celestial signal.
The second flight of the Medium Scale Anisotropy Measurement (MSAM1-94) observed the same field as the first flight (MSAM1-92) to confirm our earlier measurement of cosmic microwave background radiation (CMBR) anisotropy. This instrument chops a 30ar
Previous simulations of the growth of cosmic structures have broadly reproduced the cosmic web of galaxies that we see in the Universe, but failed to create a mixed population of elliptical and spiral galaxies due to numerical inaccuracies and incomp
We report a discovery of a companion candidate around one of {it Kepler} Objects of Interest (KOIs), KOI-94, and results of our quantitative investigation of the possibility that planetary candidates around KOI-94 are false positives. KOI-94 has a pl
94 Ceti is a triple star system with a circumprimary gas giant planet and far-infrared excess. Such excesses around main sequence stars are likely due to debris discs, and are considered as signposts of planetary systems and, therefore, provide impor
We have calculated the Bjorken-x dependence of the kaon and pion valence quark distributions in a statistical model. Each meson is described by a Fock state expansion in terms of quarks, antiquarks and gluons. Although Drell-Yan experiments have meas