ﻻ يوجد ملخص باللغة العربية
Most studies of correlations between X-ray and optical properties of galaxy clusters have used the largest samples of data available, regardless of the morphological types of clusters included. Given the increasing evidence that morphology is related to a clusters degree of dynamical evolution, we approach the study of X-ray and optical correlations differently. We evaluate the relationship between velocity dispersion and temperature for a limited set of galaxy clusters taken from Bird (1994), which all possess dominant central galaxies and which have been explicitly corrected for the presence of substructure. We find that $sigma _r propto T^{0.61 pm 0.13}$. We use a Monte Carlo computer routine to estimate the significance of this deviation from the $sigma _r propto T^{0.5}$ relationship predicted by the virial theorem. We find that the simulated correlation is steeper than the observed value only 4% of the time, suggesting that the deviation is significant. The combination of protogalactic winds and dynamical friction reproduces nearly exactly the observed relationship between $sigma _r$ and $T$.
We measure the evolution of the velocity dispersion--temperature ($sigma_{rm v}$--$T_{rm X}$) relation up to $z = 1$ using a sample of 38 galaxy clusters drawn from the textit{XMM} Cluster Survey. This work improves upon previous studies by the use o
Observations of nearby galaxies reveal a strong correlation between the mass of the central dark object M and the velocity dispersion sigma of the host galaxy, of the form log(M/M_sun) = a + b*log(sigma/sigma_0); however, published estimates of the s
We present the study of a large sample of early-type dwarf galaxies in the Coma cluster observed with DEIMOS on the Keck II to determine their internal velocity dispersion. We focus on a subsample of 41 member dwarf elliptical galaxies for which the
Using the DIANOGA hydrodynamical zoom-in simulation set of galaxy clusters, we analyze the dynamics traced by stars belonging to the Brightest Cluster Galaxies (BCGs) and their surrounding diffuse component, forming the intracluster light (ICL), and