ﻻ يوجد ملخص باللغة العربية
Cosmic ray air showers produce radio emission, consisting in large part of geosynchrotron emission. Since the radiation mechanism is based on particle acceleration, the atmospheric electric field can play an important role. Especially inside thunderclouds large electric fields can be present. We examine the contribution of an electric field to the emission mechanism theoretically and experimentally. Two mechanisms of amplification of radio emission are considered: the acceleration radiation of the shower particles and the radiation from the current that is produced by ionization electrons moving in the electric field. We selected and evaluated LOPES data recorded during thunderstorms, periods of heavy cloudiness and periods of cloudless weather. We find that during thunderstorms the radio emission can be strongly enhanced. No amplified pulses were found during periods of cloudless sky or heavy cloudiness, suggesting that the electric field effect for radio air shower measurements can be safely ignored during non-thunderstorm conditions.
We present measurements of radio emission from cosmic ray air showers that took place during thunderstorms. The intensity and polarization patterns of these air showers are radically different from those measured during fair-weather conditions. With
Cosmic ray air showers have been known for over 30 years to emit pulsed radio emission in the frequency range from a few to a few hundred MHz, an effect that offers great opportunities for the study of extensive air showers with upcoming fully digita
We present time-domain Monte Carlo simulations of radio emission from cosmic ray air showers in the scheme of coherent geosynchrotron radiation. Our model takes into account the important air shower characteristics such as the lateral and longitudina
We have developed a sophisticated model of the radio emission from extensive air showers in the scheme of coherent geosynchrotron radiation, providing a theoretical foundation for the interpretation of experimental data from current and future experi
We report on the first direct measurement of the basic features of microwave radio emission from extensive air showers. Using a trigger provided by the KASCADE-Grande air shower array, the signals of the microwave antennas of the CROME (Cosmic-Ray Ob