ترغب بنشر مسار تعليمي؟ اضغط هنا

Current models of the observable consequences of cosmic reionization and their detectability

55   0   0.0 ( 0 )
 نشر من قبل Ilian Iliev
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Ilian T. Iliev




اسأل ChatGPT حول البحث

A number of large current experiments aim to detect the signatures of the Cosmic Reionization at redshifts z>6. Their success depends crucially on understanding the character of the reionization process and its observable consequences and designing the best strategies to use. We use large-scale simulations of cosmic reionization to evaluate the reionization signatures at redshifted 21-cm and small-scale CMB anisotropies in the best current model for the background universe, with fundamental cosmological parameters given by WMAP 3-year results (WMAP3). We find that the optimal frequency range for observing the ``global step of the 21-cm emission is 120-150 MHz, while statistical studies should aim at 140-160 MHz, observable by GMRT. Some strongly-nongaussian brightness features should be detectable at frequencies up to ~190 MHz. In terms of sensitivity-signal trade-off relatively low resolutions, corresponding to beams of at least a few arcminutes, are preferable. The CMB anisotropy signal from the kinetic Sunyaev-Zeldovich effect from reionized patches peaks at tens of muK at arcminute scales and has an rms of ~1 muK, and should be observable by the Atacama Cosmology Telescope and the South Pole Telescope. We discuss the various observational issues and the uncertainties involved, mostly related to the poorly-known reionization parameters and, to a lesser extend, to the uncertainties in the background cosmology.



قيم البحث

اقرأ أيضاً

179 - Anastasia Fialkov 2014
Models and simulations of the epoch of reionization predict that spectra of the 21-cm transition of atomic hydrogen will show a clear fluctuation peak, at a redshift and scale, respectively, that mark the central stage of reionization and the charact eristic size of ionized bubbles. This is based on the assumption that the cosmic gas was heated by stellar remnants - particularly X-ray binaries - to temperatures well above the cosmic microwave background at that time (~ 30 K). Here we show instead that the hard spectra (that is, spectra with more high-energy photons than low-energy photons) of X-ray binaries make such heating ineffective, resulting in a delayed and spatially uniform heating that modifies the 21-cm signature of reionization. Rather than looking for a simple rise and fall of the large-scale fluctuations (peaking at several millikelvin), we must expect a more complex signal also featuring a distinct minimum (at less than a millikelvin) that marks the rise of the cosmic mean gas temperature above the microwave background. Observing this signal, possibly with radio telescopes in operation today, will demonstrate the presence of a cosmic background of hard X-rays at that early time.
We study the convection zones in the outer envelope of hot massive stars which are caused by opacity peaks associated with iron and helium ionization. We determine the occurrence and properties of these convection zones as function of the stellar par ameters. We then confront our results with observations of OB stars. A stellar evolution code is used to compute a grid of massive star models at different metallicities. In these models, the mixing length theory is used to characterize the envelope convection zones. We find the iron convection zone (FeCZ) to be more prominent for lower surface gravity, higher luminosity and higher initial metallicity. It is absent for luminosities below about $10^{3.2}Lsun$, $10^{3.9}Lsun$, and $10^{4.2}$Lsun$ for the Galaxy, LMC and SMC, respectively. We map the strength of the FeCZ on the Hertzsprung-Russell diagram for three metallicities, and compare this with the occurrence of observational phenomena in O stars: microturbulence, non-radial pulsations, wind clumping, and line profile variability. The confirmation of all three trends for the FeCZ as function of stellar parameters by empirical microturbulent velocities argues for a physical connection between sub-photospheric convective motions and small scale stochastic velocities in the photosphere of O- and B-type stars. We further suggest that clumping in the inner parts of the winds of OB stars could be caused by the same mechanism, and that magnetic fields produced in the FeCZ could appear at the surface of OB stars as diagnosed by discrete absorption components in ultraviolet absorption lines.
It has been suggested that galactic shock asymmetry induced by our galaxys infall toward the Virgo Cluster may be a source of periodicity in cosmic ray exposure as the solar system oscillates perpendicular to the galactic plane. Here we investigate a mechanism by which cosmic rays might affect terrestrial biodiversity, ionization and dissociation in the atmosphere, resulting in depletion of ozone and a resulting increase in the dangerous solar UVB flux on the ground, with an improved ionization background computation averaged over a massive ensemble (about 7 x 10^5) shower simulations. We study minimal and full exposure to the postulated extragalactic background. The atmospheric effects are greater than with our earlier, simplified ionization model. At the lower end of the range effects are too small to be of serious consequence. At the upper end of the range, ~6 % global average loss of ozone column density exceeds that currently experienced due to effects such as accumulated chlorofluorocarbons. The intensity is less than a nearby supernova or galactic gamma-ray burst, but the duration would be about 10^6 times longer. Present UVB enhancement from current ozone depletion ~3% is a documented stress on the biosphere, but a depletion of the magnitude found at the upper end of our range would double the global average UVB flux. For estimates at the upper end of the range of the cosmic ray variability over geologic time, the mechanism of atmospheric ozone depletion may provide a major biological stress, which could easily bring about major loss of biodiversity. Future high energy astrophysical observations will resolve the question of whether such depletion is likely.
We present a fully self-consistent simulation of a synthetic survey of the furthermost cosmic explosions. The appearance of the first generation of stars (Population III) in the Universe represents a critical point during cosmic evolution, signaling the end of the dark ages, a period of absence of light sources. Despite their importance, there is no confirmed detection of Population III stars so far. A fraction of these primordial stars are expected to die as pair-instability supernovae (PISNe), and should be bright enough to be observed up to a few hundred million years after the big bang. While the quest for Population III stars continues, detailed theoretical models and computer simulations serve as a testbed for their observability. With the upcoming near-infrared missions, estimates of the feasibility of detecting PISNe are not only timely but imperative. To address this problem, we combine state-of-the-art cosmological and radiative simulations into a complete and self-consistent framework, which includes detailed features of the observational process. We show that a dedicated observational strategy using $lesssim 8$ per cent of total allocation time of the James Webb Space Telescope mission can provide us up to $sim 9-15$ detectable PISNe per year.
58 - T.A. Ensslin 1996
The masses of clusters of galaxies estimated by gravitational lensing exceed in many cases the mass estimates based on hydrostatic equilibrium. This may suggest the existence of nonthermal pressure. We ask if radio galaxies can heat and support the c luster gas with injected cosmic ray protons and magnetic field densities, which are permitted by Faraday rotation and gamma ray observations of clusters of galaxies. We conclude that they are powerful enough to do this within a cluster radius of roughly 1 Mpc. If present, nonthermal pressures could lead to a revised estimate of the ratio of baryonic mass to total mass, and the apparent baryonic overdensity in clusters would disappear. In consequence, $Omega_{rm cold}$, the clumping part of the cosmological density $Omega_{o}$, would be larger than $0.4,h_{50}^{-1/2}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا