ترغب بنشر مسار تعليمي؟ اضغط هنا

Sterile Neutrino as Dark Matter candidate from CMB alone

78   0   0.0 ( 0 )
 نشر من قبل Lucia Popa
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Distortions of CMB temperature and polarization maps caused by gravitational lensing, observable with high angular resolution and sensitivity, can be used to constrain the sterile neutrino mass, m_s, from CMB data alone. We forecast m_s>1.75 keV from Planck and m_s>4.97 keV from Inflation Probe at 95% CL, by using the CMB weak lensing extraction.



قيم البحث

اقرأ أيضاً

We review sterile neutrinos as possible Dark Matter candidates. After a short summary on the role of neutrinos in cosmology and particle physics, we give a comprehensive overview of the current status of the research on sterile neutrino Dark Matter. First we discuss the motivation and limits obtained through astrophysical observations. Second, we review different mechanisms of how sterile neutrino Dark Matter could have been produced in the early universe. Finally, we outline a selection of future laboratory searches for keV-scale sterile neutrinos, highlighting their experimental challenges and discovery potential.
Extending the Standard Model with three right-handed neutrinos and a simple QCD axion sector can account for neutrino oscillations, dark matter and baryon asymmetry; at the same time, it solves the strong CP problem, stabilizes the electroweak vacuum and can implement critical Higgs inflation (satisfying all current observational bounds). We perform here a general analysis of dark matter (DM) in such a model, which we call the $a u$MSM. Although critical Higgs inflation features a (quasi) inflection point of the inflaton potential we show that DM cannot receive a contribution from primordial black holes in the $a u$MSM. This leads to a multicomponent axion-sterile-neutrino DM and allows us to relate the axion parameters, such as the axion decay constant, to the neutrino parameters. We include several DM production mechanisms: the axion production via misalignment and decay of topological defects as well as the sterile-neutrino production through the resonant and non-resonant mechanisms and in the recently proposed CPT-symmetric universe.
We present a model where sterile neutrinos with rest masses in the range ~ keV to ~ MeV can be the dark matter and be consistent with all laboratory, cosmological, large-scale structure, as well as x-ray constraints. These sterile neutrinos are assum ed to freeze out of thermal and chemical equilibrium with matter and radiation in the very early Universe, prior to an epoch of prodigious entropy generation (dilution) from out-of-equilibrium decay of heavy particles. In this work, we consider heavy, entropy-producing particles in the ~ TeV to ~ EeV rest-mass range, possibly associated with new physics at high-energy scales. The process of dilution can give the sterile neutrinos the appropriate relic densities, but it also alters their energy spectra so that they could act like cold dark matter, despite relatively low rest masses as compared to conventional dark matter candidates. Moreover, since the model does not rely on active-sterile mixing for producing the relic density, the mixing angles can be small enough to evade current x-ray or lifetime constraints. Nevertheless, we discuss how future x-ray observations, future lepton number constraints, and future observations and sophisticated simulations of large-scale structure could, in conjunction, provide evidence for this model and/or constrain and probe its parameters.
We present a comprehensive analysis of constraints on the sterile neutrino as a dark matter candidate. The minimal production scenario with a standard thermal history and negligible cosmological lepton number is in conflict with conservative radiativ e decay constraints from the cosmic X-ray background in combination with stringent small-scale structure limits from the Lyman-alpha forest. We show that entropy release through massive particle decay after production does not alleviate these constraints. We further show that radiative decay constraints from local group dwarf galaxies are subject to large uncertainties in the dark matter density profile of these systems. Within the strongest set of constraints, resonant production of cold sterile neutrino dark matter in non-zero lepton number cosmologies remains allowed.
87 - Joachim Kopp 2021
In these brief lecture notes, we introduce sterile neutrinos as dark matter candidates. We discuss in particular their production via oscillations, their radiative decay, as well as possible observational signatures and constraints.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا