ﻻ يوجد ملخص باللغة العربية
Using archival X-ray data, we find that the catalog location of the X-ray binary Scutum X-1 (Sct X-1) is incorrect, and that the correct location is that of the X-ray source AX J183528-0737, which is 15 to the west. Our identification is made on the basis of the 112-s pulse period for this object detected in an XMM-Newton observation, as well as spatial coincidence between AX J183528-0737 and previous X-ray observations. Based on the XMM-Newton data and archival RXTE data, we confirm secular spin-down over 17 years with period derivative Pdot~3.9e-9 s/s, but do not detect a previously reported X-ray iron fluorescence line. We identify a bright (Ks=6.55), red (J-Ks=5.51), optical and infrared counterpart to AX J183528-0737 from 2MASS, a number of mid-IR surveys, and deep optical observations, which we use to constrain the extinction to and distance of Sct X-1. From these data, as well as limited near-IR spectroscopy, we conclude that Sct X-1 is most likely a binary system comprised of a late-type giant or supergiant and a neutron star.
We have measured the precise position of the 38-s eclipsing X-ray pulsar OAO 1657-415 with the Chandra X-Ray Observatory: RA = 17h00m48.90s, Dec = -41d39m21.6s, equninox J2000, error radius = 0.5 arcsec. Based on the previously measured pulsar mass f
Despite the unique X-ray behavior of the compact bursting X-ray source MXB1730-335, the Rapid Burster (RB) in the highly reddened globular cluster Liller 1, to date there has been no known optical/IR counterpart for the object, no precise astrometric
Optical and X-ray observations are presented here of a newly reported X-ray transient system in the Small Magellanic Cloud - SXP7.92. A detailed analysis of the X-ray data reveal a coherent period of 7.9s. A search through earlier X-ray observations
During normal Type I outbursts, the pulse profiles of Be/X-ray binary pulsars are found to be complex in soft X-ray energy ranges. The profiles in soft X-ray energy ranges are characterized by the presence of narrow absorption dips or dip-like featur
The TeV gamma-ray point source HESSJ1832-093 remains unidentified despite extensive multi-wavelength studies. The gamma-ray emission could originate in a very compact pulsar wind nebula or an X-ray binary system composed of the X-ray source XMMU J183