ترغب بنشر مسار تعليمي؟ اضغط هنا

The first multi-wavelength campaign of AXP 4U 0142+61 from radio to hard X-rays

154   0   0.0 ( 0 )
 نشر من قبل Peter den Hartog
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

For the first time a quasi-simultaneous multi-wavelength campaign has been performed on an Anomalous X-ray Pulsar from the radio to the hard X-ray band. 4U 0142+61 was an INTEGRAL target for 1 Ms in July 2005. During these observations it was also observed in the X-ray band with Swift and RXTE, in the optical and NIR with Gemini North and in the radio with the WSRT. In this paper we present the source-energy distribution. The spectral results obtained in the individual wave bands do not connect smoothly; apparently components of different origin contribute to the total spectrum. Remarkable is that the INTEGRAL hard X-ray spectrum (power-law index 0.79 +/- 0.10) is now measured up to an energy of ~230 keV with no indication of a spectral break. Extrapolation of the INTEGRAL power-law spectrum to lower energies passes orders of magnitude underneath the NIR and optical fluxes, as well as the low ~30 microJy (2 sigma) upper limit in the radio band.



قيم البحث

اقرأ أيضاً

69 - Z.N. Osmanov 2021
In the present paper we study the possibility of a simultaneous generation of radio waves and soft $X$-rays by means of the quasi-linear diffusion (QLD) in the anomalous pulsar AXP 4U 0142+61. Considering the magnetosphere composed of the so-called b eam component and the plasma component respectively, we argue that the frozen-in condition will inevitably lead to the generation of the unstable cyclotron waves. These waves, via the QLD, will in turn influence the particle distribution function, leading to certain values of the pitch angles, thus to an efficient synchrotron mechanism, producing soft $X$-ray photons. We show that for physically reasonable parameters of magnetospheric plasmas, the QLD can provide generation of radio waves in the following interval $40$ MHz-$111$ MHz connected to soft $X$-rays for the domain $0.3$keV-$1.4$keV.
The anomalous X-ray pulsar 4U 0142+61 was observed with Suzaku on 2007 August 15 for a net exposure of -100 ks, and was detected in a 0.4 to ~70 keV energy band. The intrinsic pulse period was determined as 8.68878 pm 0.00005 s, in agreement with an extrapolation from previous measurements. The broadband Suzaku spectra enabled a first simultaneous and accurate measurement of the soft and hard components of this object by a single satellite. The former can be reproduced by two blackbodies, or slightly better by a resonant cyclotron scattering model. The hard component can be approximated by a power-law of photon index Gamma h ~0.9 when the soft component is represented by the resonant cyclotron scattering model, and its high-energy cutoff is constrained as >180 keV. Assuming an isotropic emission at a distance of 3.6 kpc, the unabsorbed 1-10 keV and 10-70 keV luminosities of the soft and hard components are calculated as 2.8e+35 erg s^{-1} and 6.8e+34 erg s^{-1}, respectively. Their sum becomes ~10^3 times as large as the estimated spin-down luminosity. On a time scale of 30 ks, the hard component exhibited evidence of variations either in its normalization or pulse shape.
80 - F. Hulleman 2000
The energy source of the anomalous X-ray pulsars is not well understood, hence their designation as anomalous. Unlike binary X-ray pulsars, no companions are seen, so the energy cannot be supplied by accretion of matter from a companion star. The los s of rotational energy, which powers radio pulsars, is insufficient to power AXPs. Two models are generally considered: accretion from a large disk left over from the birth process, or decay of a very strong magnetic field (10^15 G) associated with a magnetar. The lack of counterparts at other wavelengths has hampered progress in our understanding of these objects. Here, we present deep optical observations of the field around 4U 0142+61, which is the brightest AXP in X-rays. We find an object with peculiar optical colours at the position of the X-ray source, and argue that it is the optical counterpart. The optical emission is too faint to admit the presence of a large accretion disk, but may be consistent with magnetospheric emission from a magnetar.
We present detailed spectral and temporal characteristics both in the hard X-ray (>10 keV) and soft X-ray (<10 keV) domains, obtained using data from INTEGRAL, XMM-Newton, ASCA and RXTE. The INTEGRAL time-averaged total spectrum shows a power-law lik e shape with photon index Gamma = 0.93 +/- 0.06. 4U 0142+61 is detected up to 229 keV and the flux between 20 keV and 229 keV is (15.01 +/- 0.82) x 10^(-11) erg/cm^2/s. Using simultaneously collected data with the spectrometer SPI of INTEGRAL the combined total spectrum yields the first evidence for a spectral break with a peak energy of 228 +65/-41 keV. There is no evidence for significant long-term time variability of the total emission. Pulsed emission is measured with ISGRI up to 160 keV. The 20-160 keV profile shows a broad double-peaked pulse with a 6.2 sigma detection significance. The total pulsed spectrum can be described with a very hard power-law shape with a photon index Gamma = 0.40 +/- 0.15. We performed phase-resolved spectroscopy over the total high-energy band (2.8-300 keV) and identify at least three genuinely different pulse components with different spectra. The high level of consistency between the detailed results from the four missions is indicative for a remarkable stable geometry underlying the emission scenario.
4U 0142+61 is one of a small class of persistently bright magnetars. Here we report on a monitoring campaign of 4U 0142+61 from 2011 July 26 - 2016 June 12 using the Swift X-ray Telescope, continuing a 16 year timing campaign with the Rossi X-ray Tim ing Explorer. We show that 4U 0142+61 had two radiatively loud timing events, on 2011 July 29 and 2015 February 28, both with short soft gamma-ray bursts, and a long-lived flux decay associated with each case. We show that the 2015 timing event resulted in a net spin-down of the pulsar due to over-recovery of a glitch. We compare this timing event to previous such events in other high-magnetic-field pulsars, and discuss net spin-down glitches now seen in several young, high-B pulsars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا