ﻻ يوجد ملخص باللغة العربية
We investigate the baryon fraction in dark matter haloes formed in non-radiative gas-dynamical simulations of the LambdaCDM cosmogony. By combining a realisation of the Millennium Simulation (Springel et al.) with a simulation of a smaller volume focussing on dwarf haloes, our study spans five decades in halo mass, from 10^10 Msun/h to 10^15 Msun/h. We find that the baryon fraction within the halo virial radius is typically 90% of the cosmic mean, with an rms scatter of 6%, independently of redshift and of halo mass down to the smallest resolved haloes. Our results show that, contrary to the proposal of Mo et al. (2005), pre-virialisation gravitational heating is unable to prevent the collapse of gas within galactic and proto-galactic haloes, and confirm the need for non-gravitational feedback in order to reduce the efficiency of gas cooling and star formation in dwarf galaxy haloes. Simulations including a simple photoheating model (where a gas temperature floor of T_{floor} = 2x10^4 K is imposed from z=11) confirm earlier suggestions that photoheating can only prevent the collapse of baryons in systems with virial temperatures T_{200} < ~2.2 T_{floor} ~ 4.4x10^4 K (corresponding to a virial mass of M_{200} ~ 10^10 Msun/h and a circular velocity of V_{200} ~ 35 km/s). Photoheating may thus help regulate the formation of dwarf spheroidals and other galaxies at the extreme faint-end of the luminosity function, but it cannot, on its own, reconcile the abundance of sub-L* galaxies with the vast number of dwarf haloes expected in the LambdaCDM cosmogony. The lack of evolution or mass dependence seen in the baryon fraction augurs well for X-ray cluster studies that assume a universal and non-evolving baryon fraction to place constraints on cosmological parameters.
Baryons and cold dark matter (CDM) did not comove prior to recombination. This leads to differences in the local baryon and CDM densities, the so-called baryon-CDM isocurvature perturbations $delta_{bc}$. These perturbations are usually neglected in
The MareNostrum Universe is one of the largest cosmological SPH simulation done so far. It consists of $1024^3$ dark and $1024^3$ gas particles in a box of 500 $h^{-1}$ Mpc on a side. Here we study the shapes and spins of the dark matter and gas
The cross-correlation of Sunyaev-Zeldovich effect (SZ) and weak-lensing imaging surveys can be used to test how well hot baryons trace dark matter in clusters of galaxies. We examine this concept using mock SZ and weak-lensing surveys based on the fo
The puzzling correlation between the spin parameter lambda of galactic disks and the disk-to-halo mass fraction fdisk is investigated. We show that such a correlation arises naturally from uncertainties in determining the virial masses of dark matter
We combine ASCA and ROSAT X-ray data to constrain the radial dark matter distribution in the primary cluster of A2256, free from the isothermality assumption. Both instruments indicate that the temperature declines with radius. The region including t