ﻻ يوجد ملخص باللغة العربية
We present high-resolution echelle spectroscopy, obtained with the UVES spectrograph on ESO/VLT, of two luminous star clusters in the metal-poor blue compact galaxy ESO 338-IG04 at a distance of 37.5 Mpc. Cross-correlating with template stars, we obtain line-of-sight velocity dispersions of 33 and 17 km/s. By combining with size estimates from Hubble Space Telescope images we infer dynamical masses of 1.3x10^7 and 4.0x10^6 solar masses for the two clusters, making them among the most massive known. The less massive cluster is the faintest cluster for which a dynamical mass has yet been obtained. In both clusters we detect Balmer absorption lines which we use to estimate their ages. From the younger (~6 Myr) and more massive cluster, we detect He II 4686 emission of intermediate width, indicating the presence of very massive O-stars. Moreover, analysis of the [O III] 5007 and H-alpha emission lines from the region near the younger cluster indicates that it is associated with a bubble expanding at ~40 km/s. We also see from the Na I D absorption lines indications of neutral gas flows towards the younger cluster. We compare the dynamical masses with those derived from photometry and discuss implications for the stellar initial mass function (IMF) in each cluster. Both clusters are compatible with rather normal IMFs which will favour their long-term survival and evolution into massive bona fide globular clusters.
Luminous blue compact galaxies, common at z~1 but now relatively rare, show disturbed kinematics in emission lines. As part of a programme to understand their formation and evolution, we have investigated the stellar dynamics of a number of nearby ob
(abridged) Strongly star-forming galaxies of subsolar metallicities are typical of the high-redshift universe. Here we therefore provide accurate data for two low-z analogs, the well-known low-metallicity emission-line galaxies Haro 11 and ESO 338-IG
Using high-dispersion spectra from the HIRES echelle spectrograph on the Keck I telescope, we measure velocity dispersions for 4 globular clusters in M33. Combining the velocity dispersions with integrated photometry and structural parameters derived
Context. The origin and dynamical evolution of star clusters is an important topic in stellar astrophysics. Several models have been proposed to understand the formation of bound and unbound clusters and their evolution, and these can be tested by ex
Blue hook (BHk) stars are a rare class of horizontal branch stars that so far have been found in only very few Galactic globular clusters (GCs). The dominant mechanism for producing these objects is currently still unclear. In order to test if the pr