ترغب بنشر مسار تعليمي؟ اضغط هنا

AGN and Starburst Classification from Spitzer Mid-Infrared Spectra for High Redshift SWIRE Sources

59   0   0.0 ( 0 )
 نشر من قبل M. Polletta
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English
 تأليف D. Weedman




اسأل ChatGPT حول البحث

Spectra have been obtained with the Infrared Spectrograph (IRS) on the Spitzer Space Telescope for 20 sources in the Lockman Hole field of the SWIRE survey. The sample is divided between sources with indicators of an obscured AGN, based primarily on X-ray detections of optically-faint sources, and sources with indicators of a starburst, based on optical and near-infrared spectral energy distributions (SEDs) which show a luminosity peak from stellar photospheric emission. Ten of the 11 AGN sources have IRS spectra which show silicate absorption or are power laws; only one AGN source shows PAH emission features. All 9 of the sources showing starburst SEDs in the near-infrared show PAH emission features in the IRS spectra. Redshifts are determined from the IRS spectra for all 9 starbursts (1.0 < z < 1.9) and 8 of the 11 AGN (0.6 < z < 2.5). Classification as AGN because of an X-ray detection, the classification as AGN or starburst derived from the photometric SED, and the IRS spectroscopic classification as AGN (silicate absorption) or starburst (PAH emission) are all consistent in 18 of 20 sources. The surface density for starbursts which are most luminous in the mid-infrared is less than that for the most luminous AGN within the redshift interval 1.7 < z < 1.9. This result implies that mid-infrared source counts at high redshift are dominated by AGN for f(24micron) > 1.0 mJy.



قيم البحث

اقرأ أيضاً

We present the effects of limited spatial resolution to the observed mid-infrared (MIR) spectrum of an active galactic nucleus (AGN) surrounded by a disk with massive star forming regions. Using MIR observations of the face-on nearby Seyfert 1 galaxy NGC 6814, we vary the observing aperture and examine the evolution of the observed AGN/starburst fraction with our MIR diagnostic. We show that the spatial resolution of ISOCAM is sufficient to disentangle AGN from starburst features in nuclear regions of nearby galaxies (D<50Mpc). However, with the exception of a few ultra-luminous galaxies, dilution effects hide completely the AGN contribution in more distant galaxies.
Using the Spitzer Space Telescope, we have obtained rest frame 9-16mu spectra of 11 quasars and 9 radio galaxies from the 3CRR catalog at redshifts 1.0<z<1.4. This complete flux-limited 178MHz-selected sample is unbiased with respect to orientation a nd therefore suited to study orientation-dependent effects in the most powerful active galactic nuclei (AGN). The mean radio galaxy spectrum shows a clear silicate absorption feature (tau_9.7mu = 1.1) whereas the mean quasar spectrum shows silicates in emission. The mean radio galaxy spectrum matches a dust-absorbed mean quasar spectrum in both shape and overall flux level. The data for individual objects conform to these results. The trend of the silicate depth to increase with decreasing core fraction of the radio source further supports that for this sample, orientation is the main driver for the difference between radio galaxies and quasars, as predicted by AGN unification. However, comparing our high-z sample with lower redshift 3CRR objects reveals that the absorption of the high-z radio galaxy MIR continuum is lower than expected from a scaled up version of lower luminosity sources, and we discuss some effects that may explain these trends.
We present an atlas of Spitzer/IRS high resolution (R~600) 10-37um spectra for 24 well known starburst galaxies. The spectra are dominated by fine-structure lines, molecular hydrogen lines, and emission bands of polycyclic aromatic hydrocarbons. Six out of the eight objects with a known AGN component show emission of the high excitation [NeV] line. This line is also seen in one other object (NGC4194) with, a priori, no known AGN component. In addition to strong polycyclic aromatic hydrocarbon emission features in this wavelength range (11.3, 12.7, 16.4um), the spectra reveal other weak hydrocarbon features at 10.6, 13.5, 14.2um, and a previously unreported emission feature at 10.75um. An unidentified absorption feature at 13.7um is detected in many of the starbursts. We use the fine-structure lines to derive the abundance of neon and sulfur for 14 objects where the HI 7-6 line is detected. We further use the molecular hydrogen lines to sample the properties of the warm molecular gas. Several basic diagrams characterizing the properties of the sample are also shown. We have combined the spectra of all the pure starburst objects to create a high S/N template, which is available to the community.
We explore the nature of X-ray sources with 70 micron counterparts selected in the SWIRE fields ELAIS-N1, Lockman Hole and Chandra Deep Field South, for which Chandra X-ray data are available. A total of 28 X-ray/70 micron sources in the redshift int erval 0.5<z<1.3 are selected. The X-ray luminosities and the shape of the X-ray spectra show that these sources are AGN. Modelling of the optical to far-infrared Spectral Energy Distribution indicates that most of them (27/28) have a strong starburst component (>50 solar masses per year) that dominates in the infrared. It is found that the X-ray and infrared luminosities of the sample sources are broadly correlated, consistent with a link between AGN activity and star-formation. Contrary to the predictions of some models for the co-evolution of AGN and galaxies, the X-ray/70 micron sources in the sample are not more obscured at X-ray wavelengths compared to the overall X-ray population. It is also found that the X-ray/70 micron sources have lower specific star-formation rates compared to the general 70 micron population, consistent with AGN feedback moderating the star-formation in the host galaxies.
225 - N. Seymour 2008
We present the first mid-infrared Spitzer/Infrared Spectrograph (IRS) observations of powerful radio galaxies at z>2. These radio galaxies, 4C +23.56 (z=2.48) and 6C J1908+7220 (z=3.53), both show strong mid-infrared continua, but with 6C J1908+7220 also showing strong PAH emission at rest-frame 6.2 and 7.7um. In 4C+23.56 we see no obvious PAH features above the continuum. The PAH emission in 6C J1908+7220 is the amongst the most distant observed to date and implies that there is a large instantaneous star formation rate (SFR). This is consistent with the strong detection of 6C J1908+7220 at far-IR and sub-mm wavelengths, indicative of large amounts of cold dust, ~10^9Msun. Powerful radio galaxies at lower redshifts tend to have weak or undetectable PAH features and typically have lower far-IR luminosities. In addition, 4C 23.56 shows moderate silicate absorption as seen in less luminous radio galaxies, indicating tau_{9.7um}=0.3+/-0.05. This feature is shifted out of the observed wavelength range for 6C J1908+7220. The correlation of strong PAH features with large amounts of cold dust, despite the presence of a powerful AGN, is in agreement with other recent results and implies that star formation at high redshift is, in some cases at least, associated with powerful, obscured AGN.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا