ﻻ يوجد ملخص باللغة العربية
We compute f-mode travel-time sensitivity kernels for flows. Using a two-dimensional model, we show that it is important to account for several systematic effects, such as the foreshortening and the projection of the velocity vector onto the line of sight. Correcting for these effects is necessary before any data inversion is attempted away from the center of the solar disk.
Time-distance helioseismology has shown that f-mode travel times contain information about horizontal flows in the Sun. The purpose of this study is to provide a simple interpretation of these travel times. We study the interaction of surface-gravity
Time-distance helioseismology is a technique for measuring the time for waves to travel from one point on the solar surface to another. These wave travel times are affected by advection by subsurface flows. Inferences of plasma flows based on observe
We compute f-mode sensitivity kernels for flows. Using a two-dimensional model, the scattered wavefield is calculated in the first Born approximation. We test the correctness of the kernels by comparing an exact solution (constant flow), a solution l
We report a systematic strengthening of the local solar surface or fundamental $f$-mode $1$-$2$ days prior to the emergence of an active region (AR) in the same (corotating) location. Except for a possibly related increase in the kurtosis of the magn
We study the strategic interaction among vehicles in a non-cooperative platoon coordination game. Vehicles have predefined routes in a transportation network with a set of hubs where vehicles can wait for other vehicles to form platoons. Vehicles dec