We discuss the optical and X-ray spectral properties of the sources detected in a single 200ks Chandra pointing in the Groth-Westphal Strip region. Optical identifications and spectroscopic redshifts are primarily from the DEEP2 survey. This is complemented with deeper (r~26mag) multi-waveband data (ugriz) from the Canada France Hawaii Legacy Survey to estimate photometric redshifts and to optically identify sources fainter than the DEEP2 magnitude limit (R(AB)~24.5mag). We focus our study on the 2-10keV selected sample comprising 97 sources to the limit ~8e-16erg/s/cm2, this being the most complete in terms of optical identification rate (86%) and redshift determination fraction (63%; both spectroscopic and photometric). We first construct the redshift distribution of the sample which shows a peak at z~1. This is in broad agreement with models where less luminous AGNs evolve out to z~1 with powerful QSOs peaking at higher redshift, z~2. Evolution similar to that of broad-line QSOs applied to the entire AGN population (both type-I and II) does not fit the data. We also explore the observed N_H distribution of the sample and estimate a fraction of obscured AGN (N_H>1e22) of ~48%. This is found to be consistent with both a luminosity dependent intrinsic N_H distribution, where less luminous systems comprise a higher fraction of type-II AGNs, and models with a fixed ratio 2:1 between type-I and II AGNs. We further compare our results with those obtained in deeper and shallower surveys. We argue that a luminosity dependent parametrisation of the intrinsic N_H distribution is required to account for the fraction of obscured AGN observed in different samples over a wide range of fluxes.