ترغب بنشر مسار تعليمي؟ اضغط هنا

Understanding Infrared Galaxy Populations: the SWIRE Legacy Survey

77   0   0.0 ( 0 )
 نشر من قبل M. Rowan-Robinson
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss spectral energy distributions, photometric redshifts, redshift distributions, luminosity functions, source-counts and the far infrared to optical luminosity ratio for sources in the SWIRE Legacy Survey. The spectral energy distributions of selected SWIRE sources are modelled in terms of a simple set of galaxy and quasar templates in the optical and near infrared, and with a set of dust emission templates (cirrus, M82 starburst, Arp 220 starburst, and AGN dust torus) in the mid infrared. The optical data, together with the IRAC 3.6 and 4.5 mu data, have been used to determine photometric redshifts. For galaxies with known spectroscopic redshifts there is a notable improvement in the photometric redshift when the IRAC data are used, with a reduction in the rms scatter from 10% in (1+z) to 5%. While further spectroscopic data are needed to confirm this result, the prospect of determining good photometric redshifts for the 2 million extragalactic objects in SWIRE is excellent. The distribution of the different infrared sed types in the L{ir}/L{opt} versus L{ir} plane, where L{ir} and L{opt} are the infrared and optical bolometric luminosities, is discussed. Source-counts at 24, 70 and 160 mu are discussed, and luminosity functions at 3.6 and 24 mu are presented.



قيم البحث

اقرأ أيضاً

We characterize the SWIRE galaxy populations in the SWIRE validation field within the Lockman Hole, based on the 3.6-24$mu$ Spitzer data and deep U,g,r,r optical imaging within an area ~1/3 sq. deg for ~16,000 Spitzer-SWIRE sources. The entire SWIRE survey will discover over 2.3 million galaxies at 3.6$mu$m and almost 350,000 at 24$mu$m; ~70,000 of these will be 5-band 3.6-24$mu$ detections. The colors cover a broad range, generally well represented by redshifted spectral energy distributions of known galaxy populations, however significant samples of unusually blue objects in the [3.6-4.5]$mu$m color are found, as well as many objects very red in the 3.6-24$mu$m mid-IR. Nine of these are investigated and are interpreted as star-forming systems, starbursts and AGN from z=0.37 to 2.8, with luminosities from L$_{IR}$=10$^{10.3}$ to 10$^{13.7}$ L$_{odot}$
We discuss optical associations, spectral energy distributions and photometric redshifts for SWIRE sources in the ELAIS-N1 area and the Lockman Validation Field. The band-merged IRAC (3.6, 4.5, 5.8 and 8.0 mu) and MIPS (24, 70, 160 mu) data have been associated with optical UgriZ data from the INT Wide Field Survey in ELAIS-N1, and with our own optical Ugri data in Lockman-VF. The spectral energy distributions of selected ELAIS sources in N1 detected by SWIRE, most with spectroscopic redshifts, are modelled in terms of a simple set of galaxy and quasar templates in the optical and near infrared, and with a set of dust emission templates (cirrus, M82 starburst, Arp 220 starburst, and AGN dust torus) in the mid infrared. The optical data, together with the IRAC 3.6 and 4.5 mu data, have been used to determine photometric redshifts. For galaxies with known spectroscopic redshifts there is a notable improvement in the photometric redshift when the IRAC data are used, with a reduction in the rms scatter from 10% in (1+z) to 7%. The photometric redshifts are used to derive the 3.6 and 24 mu redshift distribution and to compare this with the predictions of models. For those sources with a clear mid infrared excess, relative to the galaxy starlight model used for the optical and near infrared, the mid and far infrared data are modelled in terms of the same dust emission templates. The proportions found of each template type are: cirrus 31%, M82 29%, Arp 220 10%, AGN dust tori 29%. The distribution of the different infrared sed types in the L_{ir}/L_{opt} versus L_{ir} plane, where L_{ir} and L_{opt} are the infrared and optical bolometric luminosities, is discussed.
We present the SWIRE Photometric Redshift Catalogue, 1025119 redshifts of unprecedented reliability and accuracy. Our method is based on fixed galaxy and QSO templates applied to data at 0.36-4.5 mu, and on a set of 4 infrared emission templates fitt ed to infrared excess data at 3.6-170 mu. The code involves two passes through the data, to try to optimize recognition of AGN dust tori. A few carefully justified priors are used and are the key to supression of outliers. Extinction, A_V, is allowed as a free parameter. We use a set of 5982 spectroscopic redshifts, taken from the literature and from our own spectroscopic surveys, to analyze the performance of our method as a function of the number of photometric bands used in the solution and the reduced chi^2. For 7 photometric bands the rms value of (z_{phot}-z_{spec})/(1+z_{spec}) is 3.5%, and the percentage of catastrophic outliers is ~1%. We discuss the redshift distributions at 3.6 and 24 mu. In individual fields, structure in the redshift distribution corresponds to clusters which can be seen in the spectroscopic redshift distribution. 10% of sources in the SWIRE photometric redshift catalogue have z >2, and 4% have z>3, so this catalogue is a huge resource for high redshift galaxies. A key parameter for understanding the evolutionary status of infrared galaxies is L_{ir}/L_{opt}, which can be interpreted as the specific star-formation rate for starbursts. For dust tori around Type 1 AGN, L_{tor}/L_{opt} is a measure of the torus covering factor and we deduce a mean covering factor of 40%.
The survey description and the near-, mid-, and far-infrared flux properties are presented for the 258 galaxies in the Local Volume Legacy (LVL). LVL is a Spitzer Space Telescope legacy program that surveys the local universe out to 11 Mpc, built upo n a foundation of ultraviolet, H-alpha, and HST imaging from 11HUGS (11 Mpc H-alpha and Ultraviolet Galaxy Survey) and ANGST (ACS Nearby Galaxy Survey Treasury). LVL covers an unbiased, representative, and statistically robust sample of nearby star-forming galaxies, exploiting the highest extragalactic spatial resolution achievable with Spitzer. As a result of its approximately volume-limited nature, LVL augments previous Spitzer observations of present-day galaxies with improved sampling of the low-luminosity galaxy population. The collection of LVL galaxies shows a large spread in mid-infrared colors, likely due to the conspicuous deficiency of 8um PAH emission from low-metallicity, low-luminosity galaxies. Conversely, the far-infrared emission tightly tracks the total infrared emission, with a dispersion in their flux ratio of only 0.1 dex. In terms of the relation between infrared-to-ultraviolet ratio and ultraviolet spectral slope, the LVL sample shows redder colors and/or lower infrared-to-ultraviolet ratios than starburst galaxies, suggesting that reprocessing by dust is less important in the lower mass systems that dominate the LVL sample. Comparisons with theoretical models suggest that the amplitude of deviations from the relation found for starburst galaxies correlates with the age of the stellar populations that dominate the ultraviolet/optical luminosities.
The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) is designed to document the first third of galactic evolution, over the approximate redshift (z) range 8--1.5. It will image >250,000 distant galaxies using three separate c ameras on the Hubble Space Telescope, from the mid-ultraviolet to the near-infrared, and will find and measure Type Ia supernovae at z>1.5 to test their accuracy as standardizable candles for cosmology. Five premier multi-wavelength sky regions are selected, each with extensive ancillary data. The use of five widely separated fields mitigates cosmic variance and yields statistically robust and complete samples of galaxies down to a stellar mass of 10^9 M_odot to z approx 2, reaching the knee of the ultraviolet luminosity function (UVLF) of galaxies to z approx 8. The survey covers approximately 800 arcmin^2 and is divided into two parts. The CANDELS/Deep survey (5sigma point-source limit H=27.7 mag) covers sim 125 arcmin^2 within GOODS-N and GOODS-S. The CANDELS/Wide survey includes GOODS and three additional fields (EGS, COSMOS, and UDS) and covers the full area to a 5sigma point-source limit of H gtrsim 27.0 mag. Together with the Hubble Ultra Deep Fields, the strategy creates a three-tiered wedding cake approach that has proven efficient for extragalactic surveys. Data from the survey are nonproprietary and are useful for a wide variety of science investigations. In this paper, we describe the basic motivations for the survey, the CANDELS team science goals and the resulting observational requirements, the field selection and geometry, and the observing design. The Hubble data processing and products are described in a companion paper.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا