ﻻ يوجد ملخص باللغة العربية
We review the phenomenon of ultra-compact H II regions (UCHIIs) as a key phase in the early lives of massive stars. This most visible manifestation of massive star formation begins when the Lyman continuum output from the massive young stellar object becomes sufficient to ionize the surroundings from which it was born. Knowledge of this environment is gained through an understanding of the morphologies of UCHII regions and we examine the latest developments in deep radio and mid-IR imaging. SPITZER data from the GLIMPSE survey are an important new resource in which PAH emission and the ionizing stars can be seen. We review the role played by strong stellar winds from the central stars in sweeping out central cavities and causing the limb-brightened appearance. A range of evidence from velocity structure, proper motions, the molecular environment and recent hydrodynamical modeling indicates that cometary UCHII regions require a combination of champagne flow and bow shock motion. Finally, we discuss the class of hyper-compact H II regions or broad recombination line objects. They are likely to mark the transition soon after the breakout of the Lyman continuum radiation from the young star. Models for these objects are presented, including photo-evaporating disks and ionized accretion flows that are gravitationally trapped. Evolutionary scenarios tracing young massive stars passage through these ionized phases are discussed.
Medium-resolution spectra from 3650 angstroms to 10,000 angstroms are presented for 96 giant H II regions distributed in 20 spiral galaxies. We have calculated two separate grids of photoionization models, adopting single-star atmospheres (Kurucz) an
A catalogue of 239 ultra-compact HII regions (UCHIIs) found in the CORNISH survey at 5 GHz and 1.5 resolution in the region $10^{circ} < l < 65^{circ}, ~|b| < 1^{circ}$ is presented. This is the largest complete and well-selected sample of UCHIIs to
We simulate evolution of cometary H II regions based on several champagne flow models and bow shock models, and calculate the profiles of the [Ne II] fine-structure line at $12.81mu m$, the $H30alpha$ recombination line and the [Ne III] fine-structur
Utrecht has a long tradition in both spectroscopy and mass-loss studies. Here we present a novel methodology to calibrate mass-loss rates on purely spectroscopic grounds. We utilize this to predict the final fates of massive stars, involving pair-ins
The ionized core in the Sgr B2 Main star-forming region was imaged using the Submillimeter Array archival data observed for the H26$alpha$ line and continuum emission at 0.86 millimeter with an angular resolution 0.3arcsec. Eight hyper-compact H26$al