ﻻ يوجد ملخص باللغة العربية
Using non-linear time series analysis, along with surrogate data analysis, it is shown that the various types of long term variability exhibited by the black hole system GRS 1915+105, can be explained in terms of a deterministic non-linear system with some inherent stochastic noise. Evidence is provided for a non-linear limit cycle origin of one of the low frequency QPO detected in the source, while some other types of variability could be due to an underlying low dimensional chaotic system. These results imply that the partial differential equations which govern the magneto-hydrodynamic flow of the inner accretion disk, can be approximated by a small number ($approx 3 -5$) of non-linear but {it ordinary} differential equations. While this analysis does not reveal the exact nature of these approximate equations, they may be obtained in the future, after results of magneto-hydrodynamic simulation of realistic accretion disks become available.
A modified non-linear time series analysis technique, which computes the correlation dimension $D_2$, is used to analyze the X-ray light curves of the black hole system GRS 1915+105 in all twelve temporal classes. For four of these temporal classes $
We estimate the black hole spin parameter in GRS 1915+105 using the continuum-fitting method with revised mass and inclination constraints based on the very long baseline interferometric parallax measurement of the distance to this source. We fit Ros
We report on a 120 ks Chandra/HETG spectrum of the black hole GRS 1915+105. The observation was made during an extended and bright soft state in June, 2015. An extremely rich disk wind absorption spectrum is detected, similar to that observed at lowe
The space velocity of a stellar black hole encodes the history of its formation and evolution. Here we measure the 3-dimensional motion of the microquasar GRS 1915+105, using a decade of astrometry with the NRAO Very Long Baseline Array, together wit
We present the results of the timing analysis of five Rossi X-ray Timing Explorer observations of the Black Hole Candidate GRS 1915+105 between 1996 September and 1997 December. The aim was to investigate the possible presence of a type-B quasi-perio