ﻻ يوجد ملخص باللغة العربية
We present the [X/H] trends as function of the elemental condensation temperature Tc in 88 planet host stars and in a volume-limited comparison sample of 33 dwarfs without detected planetary companions. We gathered homogeneous abundance results for many volatile and refractory elements spanning a wide range of Tc, from a few dozens to several hundreds kelvin. We investigate possible anomalous trends of planet hosts with respect to comparison sample stars in order to detect evidence of possible pollution events. No significant differences are found in the behaviour of stars with and without planets. This result is in agreement with a ``primordial origin of the metal excess in planet host stars. However, a subgroup of 5 planet host and 1 comparison sample stars stands out for having particularly high [X/H] vs. Tc slopes.
We present the abundance ratios [X/H] of a large set of chemical species with condensation temperatures from 75 to 1600 K in an almost complete set of 105 planet-host stars and in a volume-limited comparison sample of 88 stars without any known plane
The relative distribution of abundances of refractory, intermediate, and volatile elements in stars with planets can be an important tool for investigating the internal migration of a giant planet. This migration can lead to the accretion of planetes
We present a detailed and uniform study of oxygen abundances in 155 solar type stars, 96 of which are planet hosts and 59 of which form part of a volume-limited comparison sample with no known planets. EW measurements were carried out for the [O I] 6
We present a detailed spectroscopic analysis of nitrogen abundances in 91 solar-type stars, 66 with and 25 without known planetary mass companions. All comparison sample stars and 28 planet hosts were analysed by spectral synthesis of the near-UV NH
(abridged) Search for planets around main-sequence (MS) stars more massive than the Sun is hindered by their hot and rapidly spinning atmospheres. This obstacle has been sidestepped by radial-velocity surveys of those stars on their post-MS evolution