ﻻ يوجد ملخص باللغة العربية
We present a simple method, based on the deformation of spherically symmetric potentials, to construct explicit axisymmetric and triaxial MOND density-potential pairs. General guidelines to the choice of suitable deformations, so that the resulting density distribution is nowhere negative, are presented. This flexible method offers for the first time the possibility to study the MOND gravitational field for sufficiently general and realistic density distributions without resorting to sophisticated numerical codes. The technique is illustrated by constructing the MOND density-potential pair for a triaxial galaxy model that, in the absence of deformation, reduces to the Hernquist sphere. Such analytical solutions are also relevant to test and validate numerical codes. Here we present a new numerical potential solver designed to solve the MOND field equation for arbitrary density distributions: the code is tested with excellent results against the analytic MOND triaxial Hernquist model and the MOND razor-thin Kuzmin disk, and a simple application is finally presented.
We study mass models that correspond to MOND (triaxial) potentials for which the Hamilton-Jacobi equation separates in ellipsoidal coordinates. The problem is first discussed in the simpler case of deep-MOND systems, and then generalized to the full
We analyze the Miyamoto--Nagai substitution, which was introduced over forty years ago to build models of thick disks and flattened elliptical galaxies. Through it, any spherical potential can be converted to an axisymmetric potential via the replace
Efficient expansions of the gravitational field of (dark) haloes have two main uses in the modelling of galaxies: first, they provide a compact representation of numerically-constructed (or real) cosmological haloes, incorporating the effects of tria
We report a simple method to generate potential/surface density pairs in flat axially symmetric finite size disks. Potential/surface density pairs consist of a ``homogeneous pair (a closed form expression) corresponding to a uniform disk, and a ``res
Cuspy triaxial potentials admit a large number of chaotic orbits, which moreover exhibit extreme stickiness that makes the process of chaotic mixing surprisingly inefficient. Environmental effects, modeled as noise and/or periodic driving, help accel