ﻻ يوجد ملخص باللغة العربية
This paper discusses the X-ray halo around the Swift gamma-ray burst GRB 050724 (z=0.258), detected by the Swift X-Ray Telescope. The halo, which forms a ring around the fading X-ray source, expands to a radius of 200 within 8 ks of the burst exactly as expected for small-angle X-ray scattering by Galactic dust along the line of sight to a cosmologically distant GRB. The expansion curve and radial profile of the halo constrain the scattering dust to be concentrated at a distance of D = 139 +/- 9 pc (from Earth) in a cloud/sheet of thickness delta-D < 22 pc. The halo was observed only out to scattering angles of 200, for which the scattering is dominated by the largest grains, with a maximum size estimated to be a_max ~ 0.4-0.5 um. The scattering-to-extinction ratio was estimated to be tau_scat/A_V > 0.022; this is a lower limit to the true value because contribution from smaller grains, which scatter to larger angles, was not directly observed. The line-of-sight to the GRB passes close to the Ophiuchus molecular cloud complex, which provides a plausible site for the scattering dust.
Two new expanding X-ray rings were detected by the Swift XRT instrument during early follow-up observations of GRB 061019 and GRB 070129, increasing to 5 the number of dust scattering X-ray halos observed around GRBs. Although these two halos were pa
X-ray photons coming from an X-ray point source not only arrive at the detector directly, but also can be strongly forward-scattered by the interstellar dust along the line of sight (LOS), leading to a detectable diffuse halo around the X-ray point s
The exquisite angular resolution available with Chandra should allow precision measurements of faint diffuse emission surrounding bright sources, such as the X-ray scattering halos created by interstellar dust. However, the ACIS CCDs suffer from pile
This paper discusses Swift observations of the gamma-ray burst GRB 050315 (z=1.949) from 80 s to 10 days after the onset of the burst. The X-ray light curve displayed a steep early decay (t^-5) for ~200 s and several breaks. However, both the prompt
The unique capability of the Swift satellite to perform a prompt and autonomous slew to a newly detected Gamma-Ray Burst (GRB) has yielded the discovery of interesting new properties of GRB X-ray afterglows, such as the steep early lightcurve decay a