ترغب بنشر مسار تعليمي؟ اضغط هنا

Gravitational Lensing & Stellar Dynamics

60   0   0.0 ( 0 )
 نشر من قبل L. V. E. Koopmans
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English
 تأليف L.V.E. Koopmans




اسأل ChatGPT حول البحث

Strong gravitational lensing and stellar dynamics provide two complementary and orthogonal constraints on the density profiles of galaxies. Based on spherically symmetric, scale-free, mass models, it is shown that the combination of both techniques is powerful in breaking the mass-sheet and mass-anisotropy degeneracies. Second, observational results are presented from the Lenses Structure & Dynamics (LSD) Survey and the Sloan Lens ACS (SLACS) Survey collaborations to illustrate this new methodology in constraining the dark and stellar density profiles, and mass structure, of early-type galaxies to redshifts of unity.



قيم البحث

اقرأ أيضاً

80 - A. J. Harding 2017
Gravitational lensing provides a means to measure mass that does not rely on detecting and analysing light from the lens itself. Compact objects are ideal gravitational lenses, because they have relatively large masses and are dim. In this paper we d escribe the prospects for predicting lensing events generated by the local population of compact objects, consisting of 250 neutron stars, 5 black holes, and approximately 35,000 white dwarfs. By focusing on a population of nearby compact objects with measured proper motions and known distances from us, we can measure their masses by studying the characteristics of any lensing event they generate. Here we concentrate on shifts in the position of a background source due to lensing by a foreground compact object. With HST, JWST, and Gaia, measurable centroid shifts caused by lensing are relatively frequent occurrences. We find that 30-50 detectable events per decade are expected for white dwarfs. Because relatively few neutron stars and black holes have measured distances and proper motions, it is more difficult to compute realistic rates for them. However, we show that at least one isolated neutron star has likely produced detectable events during the past several decades. This work is particularly relevant to the upcoming data releases by the Gaia mission and also to data that will be collected by JWST. Monitoring predicted microlensing events will not only help to determine the masses of compact objects, but will also potentially discover dim companions to these stellar remnants, including orbiting exoplanets.
185 - C. Grillo , M. Lombardi , 2007
We show how the combination of observations related to strong gravitational lensing and stellar dynamics in ellipticals offers a new way to measure the cosmological matter and dark-energy density parameters. A gravitational lensing estimate of the ma ss enclosed inside the Einstein circle can be obtained by measuring the Einstein angle, once the critical density of the system is known. A model-dependent dynamical estimate of this mass can also be obtained by measuring the central velocity dispersion of the stellar component. By assuming the well-tested homologous 1/r^{2} profile for the total density distribution in the lens elliptical galaxies, these two mass measurements can be properly compared. Thus, a relation between the Einstein angle and the central stellar velocity dispersion is derived, and the cosmological matter and the dark-energy density parameters can be estimated from this. We determined the accuracy of the cosmological parameter estimates by means of simulations that include realistic measurement uncertainties on the relevant quantities. Interestingly, the expected constraints on the cosmological parameter plane are complementary to those coming from other observational techniques. Then, we applied the method to the data sets of the Sloan Lens ACS and the Lenses Structure and Dynamics Surveys, and showed that the concordance value between 0.7 and 0.8 for the dark-energy density parameter is included in our 99% confidence regions. The small number of lenses available to date prevents us from precisely determining the cosmological parameters, but it still proves the feasibility of the method. When applied to samples made of hundreds of lenses that are expected to become available from forthcoming surveys, this technique will be an important tool for measuring the geometry of the Universe.
[Abridged] We present two-dimensional line-of-sight stellar kinematics of the lens galaxy in the Einstein Cross, obtained with the GEMINI 8m telescope, using the GMOS integral-field spectrograph. The velocity map shows regular rotation up to ~100 km/ s around the minor axis of the bulge, consistent with axisymmetry. The velocity dispersion map shows a weak gradient increasing towards a central (R<1) value of sigma_0=170+/-9 km/s. We deproject the observed surface brightness from HST imaging to obtain a realistic luminosity density of the lens galaxy, which in turn is used to build axisymmetric dynamical models that fit the observed kinematic maps. We also construct a gravitational lens model that accurately fits the positions and relative fluxes of the four quasar images. We find that the resulting luminous and total mass distribution are nearly identical around the Einstein radius R_E = 0.89, with a slope that is close to isothermal, but which becomes shallower towards the center if indeed mass follows light. The dynamical model fits to the observed kinematic maps result in a total mass-to-light ratio (M/L)_dyn=3.7+/-0.5 M_sun/L_sun,I (in the I-band). This is consistent with the Einstein mass M_E = 1.54 x 10^10 M_sun divided by the (projected) luminosity within R_E, which yields a total mass-to-light ratio of (M/L)_E=3.4 M_sun/L_sun,I, with an error of at most a few per cent. We estimate from stellar populations model fits to colors of the lens galaxy a stellar mass-to-light ratio (M/L)_* from 2.8 to 4.1 M_sun/L_sun,I. Although a constant dark matter fraction of 20 per cent is not excluded, dark matter may play no significant role in the bulge of this ~L* early-type spiral galaxy.
Internal dynamical evolution can drive stellar systems into states of high central density. For many star clusters and galactic nuclei, the time scale on which this occurs is significantly less than the age of the universe. As a result, such systems are expected to be sites of frequent interactions among stars, binary systems, and stellar remnants, making them efficient factories for the production of compact binaries, intermediate-mass black holes, and other interesting and eminently observable astrophysical exotica. We describe some elements of the competition among stellar dynamics, stellar evolution, and other mechanisms to control the dynamics of stellar systems, and discuss briefly the techniques by which these systems are modeled and studied. Particular emphasis is placed on pathways leading to massive black holes in present-day globular clusters and other potentially detectable sources of gravitational radiation.
178 - Keiichi Umetsu 2010
Weak gravitational lensing of background galaxies is a unique, direct probe of the distribution of matter in clusters of galaxies. We review several important aspects of cluster weak gravitational lensing together with recent advances in weak lensing techniques for measuring cluster lensing profiles and constraining cluster structure parameters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا