ﻻ يوجد ملخص باللغة العربية
The Angstrom Project is using a global network of 2m-class telescopes to conduct a high cadence pixel microlensing survey of the bulge of the Andromeda Galaxy (M31), with the primary aim of constraining its underlying bulge mass distribution and stellar mass function. Here we investigate the feasibility of using such a survey to detect planets in M31. We estimate the efficiency of detecting signals for events induced by planetary systems as a function of planet/star mass ratio and separation, source type and background M31 surface brightness. We find that for planets of a Jupiter-mass or above that are within the lensing zone (~1 -3 AU) detection is possible above 3 $sigma$, with detection efficiencies ~3% for events associated with giant stars, which are the typical source stars of pixel-lensing surveys. A dramatic improvement in the efficiency of ~40 -- 60% is expected if follow-up observations on an 8m telescope are made possible by a real-time alert system.
The perturbation caused by planet-moon binarity on the time-of-arrival signal of a pulsar with an orbiting planet is derived for the case in which the orbits of the moon and the planet-moon barycenter are both circular and coplanar. The signal consis
To understand the history and formation mechanisms of galaxies it is crucial to determine their current multidimensional structure. Here we focus on stellar population properties, such as metallicity and [$alpha$/Fe] enhancement. We devise a new tech
A planet orbiting around a pulsar would be immersed in an ultra-relativistic under-dense plasma flow. It would behave as a unipolar inductor, with a significant potential drop along the planet. As for Io in Jupiters magnetosphere, there would be two
Discrete far-infrared (FIR) sources of M31 are identified in the ISO 175um map and characterized via their FIR colours, luminosities and masses. With a mean size of 800pc, they probably represent several clouds in chance projection or giant cloud com
We present Spitzer/Infrared Spectrograph (IRS) 5-21 micron spectroscopic maps towards 12 regions in the Andromeda galaxy (M31). These regions include the nucleus, bulge, an active region in the star-forming ring, and 9 other regions chosen to cover a