ترغب بنشر مسار تعليمي؟ اضغط هنا

Clustering of Lyman Break Galaxies at z=4 and 5 in The Subaru Deep Field: Luminosity Dependence of The Correlation Function Slope

109   0   0.0 ( 0 )
 نشر من قبل Nobunari Kashikawa
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We explored the clustering properties of Lyman Break Galaxies (LBGs) at z=4 and 5 with an angular two-point correlation function on the basis of the very deep and wide Subaru Deep Field data. We found an apparent dependence of the correlation function slope on UV luminosity for LBGs at both z=4 and 5. More luminous LBGs have a steeper correlation function. To compare these observational results, we constructed numerical mock LBG catalogs based on a semianalytic model of hierarchical clustering combined with high-resolution N-body simulation, carefully mimicking the observational selection effects. The luminosity functions for LBGs predicted by this mock catalog were found to be almost consistent with the observation. Moreover, the overall correlation functions of LBGs were reproduced reasonably well. The observed dependence of the clustering on UV luminosity was not reproduced by the model, unless subsamples of distinct halo mass were considered. That is, LBGs belonging to more massive dark haloes had steeper and larger-amplitude correlation functions. With this model, we found that LBG multiplicity in massive dark halos amplifies the clustering strength at small scales, which steepens the slope of the correlation function. The hierarchical clustering model could therefore be reconciled with the observed luminosity-dependence of the angular correlation function, if there is a tight correlation between UV luminosity and halo mass. Our finding that the slope of the correlation function depends on luminosity could be an indication that massive dark halos hosted multiple bright LBGs (abridged).



قيم البحث

اقرأ أيضاً

63 - I. Iwata , K. Ohta 2003
(abridged) We present results of a search for Lyman break galaxies (LBGs) at z ~ 5 in a 618 square-arcmin field including the HDF-N taken by Subaru Prime Focus Camera. Utilizing the published redshift data of the HDF-N and its flanking fields, the co lor selection criteria are chosen so that LBGs are picked out most efficiently and least contaminated by foreground objects. The numbers of LBG candidates detected are 310 in 23.0 < I_c < 25.5. The rest-frame UV luminosity function(LF) of LBGs at z ~ 5 is derived statistically. The fraction of contamination is estimated to be ~50% in the faintest magnitude range. The completeness of the survey is ~80% at the bright part of the sample, and ~20% in the faintest magnitude range (25.0 < I_c <= 25.5). The LF of LBG candidates at z ~ 5 does not show a significant difference from those at z ~ 3 and 4, though there might be a slight decrease in the fainter part. The UV luminosity density within the observational limit is 0.56 - 0.69 times smaller than that obtained for LBGs at z ~ 3, depending on the adopted cosmology and the integration range of the LF. The similarity of the LFs at redshifts 5 to 3 implies that most of LBGs at z ~ 5 should have faded out at z ~ 3 and LBGs at z ~ 5 are different galaxies from those seen at z ~ 3, if we take face values for ages of the LBGs at z ~ 3 obtained by the SED fitting in which a continuous star formation in an individual galaxy is assumed. However, if the star formation in LBGs is sporadic, the similarity of the LF at z ~ 3 and 5 would be explained. Such sporadic star formation has been suggested by hydrodynamical simulations and semi-analytic models with collisional starbursts, and the trend of the cosmic star formation history predicted by these studies resembles to that estimated from the UV luminosity density within the observational limit.
We combined deep U-band imaging from the KPNO-4m/MOSAIC camera with very deep multi-waveband data from the optical to infrared, to select Lyman Break Galaxies (LBGs) at z~3 using U-V and V-R colors in the Subaru Deep Field. With the resulting sample of 5161 LBGs, we construct the UV luminosity function down to $M_{UV} = -18$ and find a steep faint-end slope of $alpha=-1.78 pm 0.05$. We analyze rest-frame UV-to-IR spectral energy distributions generated from the median optical photometry and photometry on median-stacked IR images. In the stacks of faint LBGs, we find a background depression centered on the galaxy. This deficit results from the systematic difficulty of SExtractor in finding faint galaxies in regions with higher-than-average surface densities of foreground galaxies. We corrected our stacked magnitudes for this. Best-fit stellar population templates for the stacked LBG SEDs indicate stellar masses and star-formation rates of log M*/Msun = 10 and 50 M$_odot$/yr at i = 24, down to log M*/Msun = 8 and = 3 M$_odot$/yr at i = 27. For the faint stacked LBGs there is a 1-mag excess over the expected stellar continuum in the K-band, which we attribute to redshifted [OIII]4959+5007 and H$beta$ lines. Their implied equivalent widths increase with decreasing mass, reaching $rm{EW_0([O III]4959,5007+Hbeta)}$ =1500A in the faintest bin. Such strong [OIII] emission is seen only in a miniscule fraction of the most extreme local emission-line galaxies, but it probably universal in the faint galaxies that reionized the universe. Finally, we analyze clustering by computing the angular correlation function and performing halo occupation distribution (HOD) analysis. We find a mean dark halo mass of log(Mhalo/h) Msun = 11.29$pm 0.12$ for the full sample of LBGs, and log(Mhalo/h) Msun = 11.49$pm 0.1$ for the brightest half.
138 - Chun Ly 2009
Abridged: A photometric sample of ~7100 V<25.3 Lyman break galaxies (LBGs) has been selected by combining Subaru/Suprime-Cam BVRciz data with deep GALEX/NUV imaging of the Subaru Deep Field. Follow-up spectroscopy confirmed 24 LBGs at 1.5<z<2.7. Amon g the optical spectra, 12 have Ly-alpha emission with rest-frame equivalent widths of ~5-60AA. The success rate for identifying LBGs as NUV-dropouts at 1.5<z<2.7 is 86%. The rest-frame UV (1700AA) luminosity function (LF) is constructed from the photometric sample with corrections for stellar contamination and z<1.5 interlopers. The LF is 1.7+/-0.1 times higher than those of z~2 BXs and z~3 LBGs. Three explanations were considered, and it is argued that significantly underestimating low-z contamination or effective comoving volume is unlikely: the former would be inconsistent with the spectroscopic sample at 93% confidence, and the second explanation would not resolve the discrepancy. The third scenario is that different photometric selection of the samples yields non-identical galaxy populations, such that some BX galaxies are LBGs and vice versa. This argument is supported by a higher surface density of LBGs at all magnitudes while the redshift distribution of the two populations is nearly identical. This study, when combined with other star-formation rate (SFR) density UV measurements from LBG surveys, indicates that there is a rise in the SFR density: a factor of 3-6 (3-10) increase from z~5 (z~6) to z~2, followed by a decrease to z~0. This result, along with past sub-mm studies that find a peak at z~2 in their redshift distribution, suggest that z~2 is the epoch of peak star-formation. Additional spectroscopy is required to characterize the complete shape of the z~2 LBG UV LF via measurements of contamination and accurate distances.
156 - Masami Ouchi 2001
We study the clustering properties of about 1200 z~4 Lyman Break Galaxy (LBG) candidates with i<26 which are selected by color from deep BRi imaging data of a 618 arcmin^2 area in the Subaru/XMM-Newton Deep Field taken with Subaru Prime Focus Camera. The contamination and completeness of our LBG sample are evaluated, on the basis of the Hubble Deep Field North (HDFN) objects, to be 17% and 45%, respectively. We derive the angular correlation function over theta = 2-1000, and find that it is fitted fairly well by a power law, omega(theta)=A_omega theta^{-0.8}, with A_omega = 0.71 +/- 0.26. We then calculate the correlation length r0 (in comoving units) of the two-point spatial correlation function xi(r) = (r/r0)^{-1.8} from A_omega using the redshift distribution of LBGs derived from the HDFN, and find r0=2.7 (+0.5/-0.6) h^{-1} Mpc in a Lambda-dominated universe (Omega_m=0.3 and Omega_Lambda=0.7). This is twice larger than the correlation length of the dark matter at z~4 predicted from an analytic model by Peacock & Dodds but about twice smaller than that of bright galaxies predicted by a semi-analytic model of Baugh et al. We find an excess of omega(theta) on small scales (theta < 5) departing from the power law fit over 3 sigma significance levels. Interpreting this as due to galaxy mergers, we estimate the fraction of galaxies undergoing mergers in our LBG sample to be 3.0 +/- 0.9%, which is significantly smaller than those of galaxies at intermediate redshifts.
We present the results of a study of a large sample of luminous (z{AB}<26) Lyman break galaxies (LBGs) in the redshift interval 4.7<z<6.3, selected from a contiguous 0.63 square degree area covered by the UKIDSS Ultra Deep Survey (UDS) and the Subaru XMM-Newton Survey (SXDS). Utilising the large area coverage and the excellent available optical+nearIR data, we use a photometric redshift analysis to derive a new, robust, measurement of the bright end (L>L*) of the UV-selected luminosity function at high redshift. When combined with literature studies of the fainter LBG population, our new sample provides improved constraints on the luminosity function of redshift 5<z<6 LBGs over the luminosity range 0.1L*<L<10L*. A maximum likelihood analysis returns best-fitting Schechter function parameters of M*_1500=-20.73, phi*=0.0009 Mpc^-3 and alpha=-1.66 for the luminosity function at z=5, and M*_1500 = -20.04, phi*=0.0018 Mpc^-3 and alpha=-1.71 at z=6. In addition, an analysis of the angular clustering properties of our LBG sample demonstrates that luminous 5<z<6 LBGs are strongly clustered (r_0 = 8.1 Mpc), and are consistent with the occupation of dark matter halos with masses of ~10^{11.5-12.0} Msun. Moreover, by stacking the available multi-wavelength imaging data for the high-redshift LBGs it is possible to place useful constraints on their typical stellar mass. The results of this analysis suggest that luminous LBGs at 5<z<6 have an average stellar mass of ~10^10 Msun, consistent with the results of the clustering analysis assuming plausible values for the ratio of stellar to dark matter. Finally, by combining our luminosity function results with those of the stacking analysis we derive estimates of ~1x10^7 Msun Mpc^-3 and 4x10^6 Msun Mpc^-3 for the stellar mass density at z~5 and z~6 respectively.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا