ترغب بنشر مسار تعليمي؟ اضغط هنا

Light and heavy metal abundances in hot central stars of planetary nebulae

137   0   0.0 ( 0 )
 نشر من قبل K. Werner
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present new results from our spectral analyses of very hot central stars achieved since the last IAU Symposium on planetary nebulae held in Canberra 2001. The analyses are mainly based on UV and far-UV spectroscopy performed with the Hubble Space Telescope and the Far Ultraviolet Spectroscopic Explorer but also on ground-based observations performed at the Very Large Telescope and other observatories. We report on temperature, gravity, and abundance determinations for the CNO elements of hydrogen-rich central stars. In many hydrogen-deficient central stars (spectral type PG1159) we discovered particular neon and fluorine lines, which are observed for the very first time in any astrophysical object. Their analysis strongly confirms the idea that these stars exhibit intershell matter as a consequence of a late helium-shell flash.



قيم البحث

اقرأ أيضاً

While most of the low-mass stars stay hydrogen-rich on their surface throughout their evolution, a considerable fraction of white dwarfs as well as central stars of planetary nebulae have a hydrogen-deficient surface composition. The majority of thes e H-deficient central stars exhibit spectra very similar to massive Wolf-Rayet stars of the carbon sequence, i.e. with broad emission lines of carbon, helium, and oxygen. In analogy to the massive Wolf-Rayet stars, they are classified as [WC] stars. Their formation, which is relatively well understood, is thought to be the result of a (very) late thermal pulse of the helium burning shell. It is therefore surprising that some H-deficient central stars which have been found recently, e.g. IC 4663 and Abell 48, exhibit spectra that resemble those of the massive Wolf-Rayet stars of the nitrogen sequence, i.e. with strong emission lines of nitrogen instead of carbon. This new type of central stars is therefore labelled [WN]. We present spectral analyses of these objects and discuss the status of further candidates as well as the evolutionary status and origin of the [WN] stars.
High-resolution UV spectra, obtained with HST and FUSE, enable us to analyse hot hydrogen-rich central stars in detail. Up to now, optical hydrogen and helium lines have been used to derive temperature and surface gravity. Those lines, however, are r ather insensitive; in particular, neutral helium lines have completely vanished in the hottest central stars. Therefore, we have concentrated on ionization balances of metals, which have a rich line spectrum in the UV, to establish a new temperature scale for our sample. Furthermore, we have determined abundances of light metals, which had been poorly known before. They show considerable variation from star to star. We present results of quantitative spectral analyses performed with non-LTE model atmospheres.
Most of the planetary nebulae (PN) have bipolar or other non-spherically symmetric shapes. The presence of a magnetic field in the central star may be the reason for this lack of symmetry, but observational works published in the literature have so f ar reported contradictory results. We try to correlate the presence of a magnetic field with the departures from the spherical geometry of the envelopes of planetary nebulae. We determine the magnetic field from spectropolarimetric observations of ten central stars of planetary nebulae. The results of the analysis of the observations of four stars was previously presented and discussed in the literature, while the observations of six stars, plus additional measurements for a star previously observed, are presented here for the first time. All our determinations of magnetic field in the central planetary nebulae are consistent with null results. Our field measurements have a typical error bar of 150-300 G. Previous spurious field detections obtained with FORS were probably due to the use of different wavelength calibration solutions for frames obtained at different position angles of the retarder waveplate. Currently, there is no observational evidence for the presence of magnetic fields with a strength of the order of hundreds Gauss or higher in the central stars of planetary nebulae.
137 - J. Garcia-Rojas , 2013
(Abridged) We present the abundance analysis of 12 PNe ionized by [WC]-type stars and wels obtained from high-resolution spectrophotometric data. Our main aims are to determine the chemical composition of the PNe and to study the behaviour of the abu ndance discrepancy problem (ADF) in this type of planetary nebulae. The detection of a large number of optical recombination lines (ORLs) and collisionally excited lines (CELs) from different ions were presented previously. Most of the ORLs were reported for the first time in these PNe. Ionic abundances were derived from the available CELs and ORLs, using previously determined physical conditions. Based on these two sets of ionic abundances, we derived the total chemical abundances in the nebulae using suitable ICFs (when available). In spite of the [WC] nature of the central stars, moderate ADF(O^++), in the range from 1.2 to 4, were found for all the objects. We found that when the quality of the spectra is high enough the ORLs O^++/H^+ abundance ratios obtained from different multiplets excited mainly by recombination are very similar. Possible dependence of ADFs with some nebular characteristics were analysed, finding no correlation. Abundances derived from CELs were corrected by determining the t^2 parameter. O abundances for PNe, derived from ORLs, are in general larger than the solar abundance. We derived the C/O ratio from ORLs and N/O and alpha-element/O ratios from CELs and found that these PNe are, in average, N-and C-richer than the average of large PN samples. About half of our sample is C-rich (C/O>1). The alpha-elements grow in lockstep with O abundance. Comparing the N/O and C /O ratios with those derived from stellar evolution models, we estimate that about half of our PNe have progenitors with initial masses > 4 M_sun. No correlation was found between the stellar [WC]-type and the nebular abundances.
166 - Thomas Rauch 2007
Spectral analysis by means of NLTE model atmospheres has presently arrived at a high level of sophistication. High-resolution spectra of central stars of planetary nebulae can be reproduced in detail from the infrared to the X-ray wavelength range. In the case of LSV +4621, the exciting star of Sh 2-216, we demonstrate the state-of-the-art in the determination of photospheric properties like, e.g., effective temperature, surface gravity, and abundances of elements from hydrogen to nickel. From such detailed model atmospheres, we can reliably predict the ionizing spectrum of a central star which is a necessary input for the precise analysis of its ambient nebula. NLTE model-atmosphere spectra, however, are not only accessible for specialists. In the framework of the German Astrophysical Virtual Observatory (GAVO), we provide pre-calculated grids of tables with synthetic spectra of hot, compact stars as well as a tool to calculate individual model-atmosphere spectra in order to make the use of synthetic stellar spectra as easy as the use of blackbody flux distributions had been in the last century.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا