ﻻ يوجد ملخص باللغة العربية
We present an investigation of the metal enrichment of the intra-cluster medium (ICM) by galactic winds and merger-driven starbursts. We use combined N-body/hydrodynamic simulations with a semi-numerical galaxy formation model. The mass loss by galactic winds is obtained by calculating transonic solutions of steady state outflows, driven by thermal, cosmic ray and MHD wave pressure. The inhomogeneities in the metal distribution caused by these processes are an ideal tool to reveal the dynamical state of a galaxy cluster. We present surface brightness, X-ray emission weighted temperature and metal maps of our model clusters as they would be observed by X-ray telescopes like XMM-Newton. We show that X-ray weighted metal maps distinguish between pre- or post-merger galaxy clusters by comparing the metallicity distribution with the galaxy-density distribution: pre-mergers have a metallicity gap between the subclusters, post-mergers a high metallicity between subclusters. We apply our approach to two observed galaxy clusters, Abell 3528 and Abell 3921, to show whether they are pre- or post-merging systems. The survival time of the inhomogeneities in the metallicity distribution found in our simulations is up to several Gyr. We show that galactic winds and merger-driven starbursts enrich the ICM very efficiently after z=1 in the central (~ 3 Mpc radius) region of a galaxy cluster.
We investigate efficiency and time dependence of metal enrichment processes in the Intra-Cluster Medium (ICM). In this presentation we concentrate on the effects of galactic winds. The mass loss rates due to galactic winds are calculated with a speci
We investigate the differential effects of metal cooling and galactic stellar winds on the cosmological formation of individual galaxies with three sets of cosmological, hydrodynamical zoom simulations of 45 halos in the mass range 10^11<M_halo<10^13
Although galactic winds play a critical role in regulating galaxy formation, hydrodynamic cosmological simulations do not resolve the scales that govern the interaction between winds and the ambient circumgalactic medium (CGM). We implement the Physi
The propagation and evolution of cold galactic winds in galactic haloes is crucial to galaxy formation models. However, modelling of this process in hydrodynamic simulations of galaxy formation is over-simplified owing to a lack of numerical resoluti
We review recent progress in the description of the formation and evolution of galaxy clusters in a cosmological context by using numerical simulations. We focus our presentation on the comparison between simulated and observed X-ray properties, whil