ﻻ يوجد ملخص باللغة العربية
We present the discovery of nine quasars behind the Large Magellanic Cloud, with emission redshifts ranging from 0.07 to 2.0. Six of them were identified as part of the systematic variability-based search for QSOs in the objects from the OGLE-II database. Combination of variability-based selection of candidates with the candidates colours appears to be a powerful technique for identifying quasars, potentially reaching ca. 50% efficiency. We report an apparent correlation between variability magnitude and variability timescale, which - if confirmed - could put even more constraints on QSO candidate selection. The remaining three quasars were identified via followup spectroscopy of optical counterparts to X-ray sources found serendipitously by the Chandra X-ray Observatory satellite. Even though the locations of the candidates were quite uniformly distributed over the LMC bar, the confirmed QSOs all appear near the bars outskirts.
We present the discovery of four X-ray quasars (z_em = 0.26, 0.53, 0.61, 1.63) located behind the Large Magellanic Cloud; three of them are located behind the bar of the LMC. The quasars were identified via spectroscopy of optical counterparts to X-r
We present followup spectroscopic observations of quasar candidates in the Small Magellanic Cloud selected by Eyer from the OGLE database. Of twelve observed objects identified as QSO Candidate, five are confirmed quasars, with the emission redshifts
We present five X-ray quasars behind the Small Magellanic Cloud, increasing the number of known quasars behind the SMC by ca. 40%. They were identified via follow-up spectroscopy of serendipitous sources from the Chandra X-ray Observatory matched wit
We present a comprehensive multi-frequency catalogue of radio sources behind the Large Magellanic Cloud between 0.2 and 20 GHz, gathered from a combination of new and legacy radio continuum surveys. This catalogue covers an area of $sim$144~deg$^2$ a
We quadruple the number of quasars known behind the Large Magellanic Cloud (LMC) from 55 (42 in the LMC fields of the third phase of the Optical Gravitational Lensing Experiment (OGLE)) to 200 by spectroscopically confirming 169 (144 new) quasars fro