ﻻ يوجد ملخص باللغة العربية
We use recent observations of the HI-mass function to constrain galaxy formation. The data conflicts with the standard model where most of the gas in a low-mass dark matter halo is assumed to settle into a disk of cold gas that is depleted by star formation and supernova-driven outflows until the disk becomes gravitationally stable. A consistent model can be found if low-mass haloes are embedded in a preheated medium, with a specific gas entropy ~ 10Kev cm^2. Such a model simultaneously matches the faint-end slope of the galaxy luminosity function. We propose a preheating model where the medium around low-mass haloes is preheated by gravitational pancaking. Since gravitational tidal fields suppress the formation of low-mass haloes while promoting that of pancakes, the formation of massive pancakes precedes that of the low-mass haloes within them. We demonstrate that the progenitors of present-day dark matter haloes with M<10^{12}h^{-1}msun were embedded in pancakes of masses $~5x10^{12}h^{-1}msun$ at z~2. The formation of such pancakes heats the gas to a temperature of 5x10^5K and compresses it to an overdensity of ~10. Such gas has a cooling time that exceeds the age of the Universe at z~2, and has a specific entropy of ~15Kev cm^2, almost exactly the amount required to explain the stellar and HI mass functions. (Abridged)
In this paper we have calculated the effect of Lyalpha photons emitted by the first stars on the evolution of the IGM temperature. We have considered both a standard Salpeter IMF and a delta-function IMF for very massive stars with mass 300 M_sun. We
We study the effects of Supernova (SN) feedback on the formation of disc galaxies. For that purpose we run simulations using the extended version of the code GADGET-2 which includes a treatment of chemical and energy feedback by SN explosions. We fou
We investigate the consequences of applying different star formation laws in the galaxy formation model GALFORM. Three broad star formation laws are implemented: the empirical relations of Kennicutt and Schmidt and Blitz & Rosolowsky and the theoreti
We examine the effect of using different halo finders and merger tree building algorithms on galaxy properties predicted using the GALFORM semi-analytical model run on a high resolution, large volume dark matter simulation. The halo finders/tree buil
We explore how the group environment may affect the evolution of star-forming galaxies. We select 1197 Galaxy And Mass Assembly (GAMA) groups at $0.05leq z leq 0.2$ and analyze the projected phase space (PPS) diagram, i.e. the galaxy velocity as a fu