ترغب بنشر مسار تعليمي؟ اضغط هنا

Preheating by Previrialization and its Impact on Galaxy Formation

225   0   0.0 ( 0 )
 نشر من قبل Yang Xiaohu
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English
 تأليف H.J. Mo




اسأل ChatGPT حول البحث

We use recent observations of the HI-mass function to constrain galaxy formation. The data conflicts with the standard model where most of the gas in a low-mass dark matter halo is assumed to settle into a disk of cold gas that is depleted by star formation and supernova-driven outflows until the disk becomes gravitationally stable. A consistent model can be found if low-mass haloes are embedded in a preheated medium, with a specific gas entropy ~ 10Kev cm^2. Such a model simultaneously matches the faint-end slope of the galaxy luminosity function. We propose a preheating model where the medium around low-mass haloes is preheated by gravitational pancaking. Since gravitational tidal fields suppress the formation of low-mass haloes while promoting that of pancakes, the formation of massive pancakes precedes that of the low-mass haloes within them. We demonstrate that the progenitors of present-day dark matter haloes with M<10^{12}h^{-1}msun were embedded in pancakes of masses $~5x10^{12}h^{-1}msun$ at z~2. The formation of such pancakes heats the gas to a temperature of 5x10^5K and compresses it to an overdensity of ~10. Such gas has a cooling time that exceeds the age of the Universe at z~2, and has a specific entropy of ~15Kev cm^2, almost exactly the amount required to explain the stellar and HI mass functions. (Abridged)



قيم البحث

اقرأ أيضاً

164 - Benedetta Ciardi 2007
In this paper we have calculated the effect of Lyalpha photons emitted by the first stars on the evolution of the IGM temperature. We have considered both a standard Salpeter IMF and a delta-function IMF for very massive stars with mass 300 M_sun. We find that the Lyalpha photons produced by the stellar populations considered here are able to heat the IGM at z<25, although never above ~100 K. Stars with a Salpeter IMF are more effective as, due to the contribution from small-mass long-living stars, they produce a higher Lyalpha background. Lyalpha heating can affect the subsequent formation of small mass objects by producing an entropy floor that may limit the amount of gas able to collapse and reduce the gas clumping.We find that the gas fraction in halos of mass below ~ 5 x 10^6 M_sun is less than 50% (for the smallest masses this fraction drops to 1% or less) compared to a case without Lyalpha heating. Finally, Lyalpha photons heat the IGM temperature above the CMB temperature and render the 21cm line from neutral hydrogen visible in emission at z<15.
96 - C. Scannapieco 2006
We study the effects of Supernova (SN) feedback on the formation of disc galaxies. For that purpose we run simulations using the extended version of the code GADGET-2 which includes a treatment of chemical and energy feedback by SN explosions. We fou nd that our model succeeds in setting a self-regulated star formation process since an important fraction of the cold gas from the center of the haloes is efficiently heated up and transported outwards. The impact of SN feedback on galactic systems is also found to depend on virial mass: smaller systems are more strongly affected with star formation histories in which several starbursts can develop. Our implementation of SN feedback is also successful in producing violent outflows of chemical enriched material.
We investigate the consequences of applying different star formation laws in the galaxy formation model GALFORM. Three broad star formation laws are implemented: the empirical relations of Kennicutt and Schmidt and Blitz & Rosolowsky and the theoreti cal model of Krumholz, McKee & Tumlinson. These laws have no free parameters once calibrated against observations of the star formation rate (SFR) and gas surface density in nearby galaxies. We start from published models, and investigate which observables are sensitive to a change in the star formation law, without altering any other model parameters. We show that changing the star formation law (i) does not significantly affect either the star formation history of the universe or the galaxy luminosity functions in the optical and near-IR, due to an effective balance between the quiescent and burst star formation modes; (ii) greatly affects the cold gas contents of galaxies; (iii) changes the location of galaxies in the SFR versus stellar mass plane, so that a second sequence of passive galaxies arises, in addition to the known active sequence. We show that this plane can be used to discriminate between the star formation laws.
We examine the effect of using different halo finders and merger tree building algorithms on galaxy properties predicted using the GALFORM semi-analytical model run on a high resolution, large volume dark matter simulation. The halo finders/tree buil ders HBT, ROCKSTAR, SUBFIND and VELOCIRAPTOR differ in their definitions of halo mass, on whether only spatial or phase-space information is used, and in how they distinguish satellite and main haloes; all of these features have some impact on the model galaxies, even after the trees are post-processed and homogenised by GALFORM. The stellar mass function is insensitive to the halo and merger tree finder adopted. However, we find that the number of central and satellite galaxies in GALFORM does depend slightly on the halo finder/tree builder. The number of galaxies without resolved subhaloes depends strongly on the tree builder, with VELOCIRAPTOR, a phase-space finder, showing the largest population of such galaxies. The distributions of stellar masses, cold and hot gas masses, and star formation rates agree well between different halo finders/tree builders. However, because VELOCIRAPTOR has more early progenitor haloes, with these trees GALFORM produces slightly higher star formation rate densities at high redshift, smaller galaxy sizes, and larger stellar masses for the spheroid component. Since in all cases these differences are small we conclude that, when all of the trees are processed so that the main progenitor mass increases monotonically, the predicted GALFORM galaxy populations are stable and consistent for these four halo finders/tree builders.
We explore how the group environment may affect the evolution of star-forming galaxies. We select 1197 Galaxy And Mass Assembly (GAMA) groups at $0.05leq z leq 0.2$ and analyze the projected phase space (PPS) diagram, i.e. the galaxy velocity as a fu nction of projected group-centric radius, as a local environmental metric in the low-mass halo regime $10^{12}leq (M_{200}/M_{odot})< 10^{14}$. We study the properties of star-forming group galaxies, exploring the correlation of star formation rate (SFR) with radial distance and stellar mass. We find that the fraction of star-forming group members is higher in the PPS regions dominated by recently accreted galaxies, whereas passive galaxies dominate the virialized regions. We observe a small decline in specific SFR of star-forming galaxies towards the group center by a factor $sim 1.2$ with respect to field galaxies. Similar to cluster studies, we conclude for low-mass halos that star-forming group galaxies represent an infalling population from the field to the halo and show suppressed star formation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا