ترغب بنشر مسار تعليمي؟ اضغط هنا

Jets Driven by Accretion Onto Spinning Black Holes

123   0   0.0 ( 0 )
 نشر من قبل Ioana Dutan
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a theoretical model for driving jets by accretion onto Kerr black holes and try to give an answer to the following question: How much energy could be extracted from a rotating black hole and its accretion disk in order to power relativistic jets in Active Galactic Nuclei?



قيم البحث

اقرأ أيضاً

We study the structure and properties of hot MHD accretion onto a Kerr black hole. In such a system, the hole is magnetically coupled to the inflowing gas and exerts a torque onto the accretion flow. A hot settling flow can form around the hole and t ransport the angular momentum outward, to the outer edge of the flow. Unlike other hot flows, such as advection- and convection-dominated flows and inflow-outflow solutions (ADAFs, CDAFs, and ADIOS), the properties of the hot settling flow are determined by the spin of the central black hole, but are insensitive to the mass accretion rate. Therefore, it may be possible to identify rapidly spinning BHs simply from their broad-band spectra. Observationally, the hot settling flow around a Kerr hole is somewhat similar to other hot flows in that they all have hard, power-law spectra and relatively low luminosities. Thus, most black hole candidates in the low/hard and, perhaps, intermediate X-ray state may potentially accrete via the hot settling flow. However, a settling flow will be somewhat more luminous than ADAFs/CDAFs/ADIOS, will exhibit high variability in X-rays, and may have relativistic jets. This suggests that galactic microquasars and active galactic nuclei may be powered by hot settling flows. We identify several galactic X-ray sources as the best candidates.
182 - Chris Done 2010
These notes resulted from a series of lectures at the IAC winter school. They are designed to help students, especially those just starting in subject, to get hold of the fundamental tools used to study accretion powered sources. As such, the referen ces give a place to start reading, rather than representing a complete survey of work done in the field. I outline Compton scattering and blackbody radiation as the two predominant radiation mechanisms for accreting black holes, producing the hard X-ray tail and disc spectral components, respectively. The interaction of this radiation with matter can result in photo-electric absorption and/or reflection. While the basic processes can be found in any textbook, here I focus on how these can be used as a toolkit to interpret the spectra and variability of black hole binaries (hereafter BHB) and Active Galactic Nuclei (AGN). I also discuss how to use these to physically interpret real data using the publicly available XSPEC spectral fitting package (Arnaud et al 1996), and how this has led to current models (and controversies) of the accretion flow in both BHB and AGN.
Spectral formation in steady state, spherical accretion onto neutron stars and black holes is examined by solving numerically and analytically the equation of radiative transfer. The photons escape diffusively and their energy gains come from their s cattering off thermal electrons in the converging flow of the accreting gas. We show that the bulk motion of the flow is more efficient in upscattering photons than thermal Comptonization in the range of non-relativistic electron temperatures. The spectrum observed at infinity is a power law with an exponential turnover at energies of order the electron rest mass. Especially in the case of accretion into a black hole, the spectral energy power-law index is distributed around 1.5. Because bulk motion near the horizon (1-5 Schwarzschild radii) is most likely a necessary characteristic of accretion into a black hole, we claim that observations of an extended power law up to about the electron rest mass, formed as a result of bulk motion Comptonization, is a real observational evidence for the existence of an underlying black hole.
It has for long been an article of faith among astrophysicists that black hole spin energy is responsible for powering the relativistic jets seen in accreting black holes. Two recent advances have strengthened the case. First, numerical general relat ivistic magnetohydrodynamic simulations of accreting spinning black holes show that relativistic jets form spontaneously. In at least some cases, there is unambiguous evidence that much of the jet energy comes from the black hole, not the disk. Second, spin parameters of a number of accreting stellar-mass black holes have been measured. For ballistic jets from these systems, it is found that the radio luminosity of the jet correlates with the spin of the black hole. This suggests a causal relationship between black hole spin and jet power, presumably due to a generalized Penrose process.
We perform a full 3D general relativistic magnetohydrodynamical (GRMHD) simulation of an equal-mass, spinning, binary black hole approaching merger, surrounded by a circumbinary disk and with a mini-disk around each black hole. For this purpose, we e volve the ideal GRMHD equations on top of an approximated spacetime for the binary that is valid in every position of space, including the black hole horizons, during the inspiral regime. We use relaxed initial data for the circumbinary disk from a previous long-term simulation, where the accretion is dominated by a $m=1$ overdensity called the lump. We compare our new spinning simulation with a previous non-spinning run, studying how spin influences the mini-disk properties. We analyze the accretion from the inner edge of the lump to the black hole, focusing on the angular momentum budget of the fluid around the mini-disks. We find that mini-disks in the spinning case have more mass over a cycle than the non-spinning case. However, in both cases, we find most of the mass received by the black holes is delivered by the direct plunging of material from the lump. We also analyze the morphology and variability of the electromagnetic fluxes and we find they share the same periodicities of the accretion rate. In the spinning case, we find that the outflows are $8$ times stronger than the non-spinning case. Our results will be useful to understand and produce realistic synthetic light curves and spectra, which can be used in future observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا