ترغب بنشر مسار تعليمي؟ اضغط هنا

A near-IR spectroscopic search for very-low-mass cool companions to notable DA white dwarfs

105   0   0.0 ( 0 )
 نشر من قبل Matthew R. Burleigh
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English
 تأليف P. D. Dobbie




اسأل ChatGPT حول البحث

We have undertaken a detailed near-IR spectroscopic analysis of eight notable white dwarfs, predominantly of southern declination. In each case the spectrum failed to reveal compelling evidence for the presence of a spatially unresolved, cool, late-type companion. Therefore, we have placed an approximate limit on the spectral-type of a putative companion to each degenerate. From these limits we conclude that if GD659, GD50, GD71 or WD2359-434 possesses an unresolved companion then most probably it is substellar in nature (M<0.072Msun). Furthermore, any spatially unresolved late-type companion to RE J0457-280, RE J0623-374, RE J0723-274 or RE J2214-491 most likely has M<0.082Msun. These results imply that if weak accretion from a nearby late-type companion is the cause of the unusual photospheric composition observed in a number of these degenerates then the companions are of very low mass, beyond the detection thresholds of this study. Furthermore, these results do not contradict a previously noted deficit of very-low-mass stellar and brown dwarf companions to main sequence F,G,K and early-M type primaries (a<1000AU).



قيم البحث

اقرأ أيضاً

242 - Marcel A. Agueros 2009
We have conducted a search for pulsar companions to 15 low-mass white dwarfs (LMWDs; M < 0.4 M_Sun) at 820 MHz with the NRAO Green Bank Telescope (GBT). These LMWDs were spectroscopically identified in the Sloan Digital Sky Survey (SDSS), and do not show the photometric excess or spectroscopic signature associated with a companion in their discovery data. However, LMWDs are believed to evolve in binary systems and to have either a more massive WD or a neutron star as a companion. Indeed, evolutionary models of low-mass X-ray binaries, the precursors of millisecond pulsars (MSPs), produce significant numbers of LMWDs (e.g., Benvenuto & De Vito 2005), suggesting that the SDSS LMWDs may have neutron star companions. No convincing pulsar signal is detected in our data. This is consistent with the findings of van Leeuwen et al. (2007), who conducted a GBT search for radio pulsations at 340 MHz from unseen companions to eight SDSS WDs (five are still considered LMWDs; the three others are now classified as ordinary WDs). We discuss the constraints our non-detections place on the probability P_MSP that the companion to a given LMWD is a radio pulsar in the context of the luminosity and acceleration limits of our search; we find that P_MSP < 10 +4 -2 %.
We report on a search for pulsars at the positions of eight low-mass white dwarfs and one higher-mass white dwarf with the 100-m Effelsberg Radio Telescope. These systems have orbital parameters suggesting that their unseen companions are either mass ive white dwarfs or neutron stars. Our observations were performed at 1.36 GHz, reaching sensitivities of 0.1-0.2 mJy. We searched our data accounting for the possible acceleration and jerk of the pulsar signals due to orbital motion, but found no significant pulsar signals. Considering our result jointly with 20 non-detections of similar systems with the Greenbank Radio Telescope, we infer $f_{rm NS}leq 0.10$, for the fraction of NSs orbiting these white dwarfs. We discuss the sensitivity of this result to the underlying assumptions and conclude with a brief discussion on the prospects of targeted surveys for discovering millisecond pulsars.
The unprecedented extent of coverage provided by Kepler observations recently revealed outbursts in two hydrogen-atmosphere pulsating white dwarfs (DAVs) that cause hours-long increases in the overall mean flux of up to 14%. We have identified two ne w outbursting pulsating white dwarfs in K2, bringing the total number of known outbursting white dwarfs to four. EPIC 211629697, with T_eff = 10,780 +/- 140 K and log(g) = 7.94 +/- 0.08, shows outbursts recurring on average every 5.0 d, increasing the overall flux by up to 15%. EPIC 229227292, with T_eff = 11,190 +/- 170 K and log(g) = 8.02 +/- 0.05, has outbursts that recur roughly every 2.4 d with amplitudes up to 9%. We establish that only the coolest pulsating white dwarfs within a small temperature range near the cool, red edge of the DAV instability strip exhibit these outbursts.
Low-mass white dwarfs can either be produced in low-mass X-ray binaries by stable mass transfer to a neutron star, or in a common-envelope phase with a heavier white dwarf companion. We have searched 8 low-mass white dwarf candidates recently identif ied in the Sloan Digital Sky Survey for radio pulsations from pulsar companions, using the Green Bank Telescope at 340MHz. We have found no pulsations down to flux densities of 0.6-0.8 mJy/kpc^2 and conclude that a given low-mass helium-core white dwarf has a probability of < 0.18+-0.05 of being in a binary with a radio pulsar.
The star LHS 3250 is found to be a white dwarf at a distance of 30 pc. Its absolute magnitudes (M_V = 15.72; M_bol = 16.2) put it among the least-luminous white dwarfs known. Its optical spectrum shows no features, indicating it has a DC classificati on, and it shows no detectable polarization, indicating it does not have a very strong magnetic field. However, its broadband colors show it to have a unique spectral energy distribution, and it stands out from all other stars in BVI and other broadband photometric surveys. We discuss these properties, and conclude that LHS 3250 must be an extremely cool white dwarf with strong collision-induced absorption at red-infrared wavelengths from molecular hydrogen, in accord with models for very cool white dwarf atmospheres. If so, it is the first such star known, and the first star to provide observational evidence supporting these models. It suggests that other very cool white dwarfs, both halo white dwarfs and the oldest disk white dwarfs, also may have colors affected by similar absorption. The atmospheric composition of LHS 3250 is not known, and therefore its temperature is poorly determined. It may be a helium-core star with a mass 0.3-0.45 M_solar and a product of mass-transfer in a close binary system. However, until its temperature is better known, its mass and age remain uncertain.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا