ﻻ يوجد ملخص باللغة العربية
We use cosmic microwave background data from WMAP, ACBAR, VSA and CBI, and galaxy power spectrum data from 2dF, to constrain flat cosmologies based on the Jordan-Brans-Dicke theory, using a Markov Chain Monte Carlo approach. Using a parametrization based on xi=1/4omega, and performing an exploration in the range lnxi in [-9,3], we obtain a 95% marginalized probability bound of lnxi < -6.2, corresponding to a 95% marginalized probability lower bound on the Brans-Dicke parameter omega>120.
We provide an end-to-end exploration of a distinct modified gravitational theory in Jordan-Brans-Dicke (JBD) gravity, from an analytical and numerical description of the background expansion and linear perturbations, to the nonlinear regime captured
We report strong cosmological constraints on the Brans-Dicke (BD) theory of gravity using Cosmic Microwave Background data from Planck.We consider two types of models. First, the initial condition of the scalar field is fixed to give the same effecti
We reconsider constraints on Brans-Dicke theories arising from the requirement of successful Big Bang Nucleosynthesis. Such constraints typically arise by imposing that the universe be radiation-dominated at early times, and therefore restricting the
Since the evidence for an accelerated universe and the gap of 70% in the total energy, collected by WMAP, search for alternatives for the general relativity is an important issue, for this theory is not suited for these new phenomena. A particular al
When Brans-Dicke Theory is formulated in terms of the Jordan scalar field phi, dark energy is related to the mass of this field. We show that if phi is taken to be a complex scalar field then an exact solution of the vacuum equations shows that Fried