ﻻ يوجد ملخص باللغة العربية
We consider the effects of an outflow on radiation escaping from the infalling envelope around a massive protostar. Using numerical radiative transfer calculations, we show that outflows with properties comparable to those observed around massive stars lead to significant anisotropy in the stellar radiation field, which greatly reduces the radiation pressure experienced by gas in the infalling envelope. This means that radiation pressure is a much less significant barrier to massive star formation than has previously been thought.
The properties of outflows powered by massive stars are reviewed with an emphasis on the nearest examples, Orion and Cepheus-A. The Orion OMC1 outflow may have been powered by the dynamical decay of a non-hierarchical massive star system that resulte
Magnetic fields are ubiquitous in the Universe. The Suns magnetic field drives the solar wind and causes solar flares and other energetic surface phenomena that profoundly affect space weather here on Earth. The first magnetic field in a star other t
With the recent recognition of a second, distinctive class of molecular outflows, namely the explosive ones not directly connected to the accretion-ejection process in the star formation, a juxtaposition of the morphological and kinematic properties
Great strides have been made in the last two decades in determining how galaxies evolve from their initial dark matter seeds to the complex structures we observe at z=0. The role of mergers has been documented through both observations and simulation
We observe 1.3~mm spectral lines at 2000~AU resolution toward four massive molecular clouds in the Central Molecular Zone of the Galaxy to investigate their star formation activities. We focus on several potential shock tracers that are usually abund